Online Detection of Water Contamination Under Concept Drift
- URL: http://arxiv.org/abs/2501.02107v1
- Date: Fri, 03 Jan 2025 21:29:09 GMT
- Title: Online Detection of Water Contamination Under Concept Drift
- Authors: Jin Li, Kleanthis Malialis, Stelios G. Vrachimis, Marios M. Polycarpou,
- Abstract summary: Water Distribution Networks (WDNs) are vital infrastructures, and contamination poses serious public health risks.
This study introduces the Dual-Threshold Anomaly and Drift Detection (AD&DD) method.
It combines a dual-threshold drift detection mechanism with an LSTM-based Variational Autoencoder(LSTM-VAE) for real-time contamination detection.
- Score: 8.479260558632172
- License:
- Abstract: Water Distribution Networks (WDNs) are vital infrastructures, and contamination poses serious public health risks. Harmful substances can interact with disinfectants like chlorine, making chlorine monitoring essential for detecting contaminants. However, chlorine sensors often become unreliable and require frequent calibration. This study introduces the Dual-Threshold Anomaly and Drift Detection (AD&DD) method, an unsupervised approach combining a dual-threshold drift detection mechanism with an LSTM-based Variational Autoencoder(LSTM-VAE) for real-time contamination detection. Tested on two realistic WDNs, AD&DD effectively identifies anomalies with sensor offsets as concept drift, and outperforms other methods. A proposed decentralized architecture enables accurate contamination detection and localization by deploying AD&DD on selected nodes.
Related papers
- Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - DT-DDNN: A Physical Layer Security Attack Detector in 5G RF Domain for
CAVs [11.15939066175832]
jamming attacks pose substantial risks to the 5G network.
This work presents a novel deep learning-based technique for detecting jammers in CAV networks.
Results show that the proposed method achieves 96.4% detection rate in extra low jamming power.
arXiv Detail & Related papers (2024-03-05T04:29:31Z) - Investigating the Suitability of Concept Drift Detection for Detecting
Leakages in Water Distribution Networks [7.0072935721154614]
Leakages are a major risk in water distribution networks as they cause water loss and increase contamination risks.
Leakage detection is a difficult task due to the complex dynamics of water distribution networks.
From a machine-learning perspective, leakages can be modeled as concept drift.
arXiv Detail & Related papers (2024-01-03T13:12:04Z) - Continual Detection Transformer for Incremental Object Detection [154.8345288298059]
Incremental object detection (IOD) aims to train an object detector in phases, each with annotations for new object categories.
As other incremental settings, IOD is subject to catastrophic forgetting, which is often addressed by techniques such as knowledge distillation (KD) and exemplar replay (ER)
We propose a new method for transformer-based IOD which enables effective usage of KD and ER in this context.
arXiv Detail & Related papers (2023-04-06T14:38:40Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
Remote Sensing Change Detection (RS-CD) aims to detect relevant changes from Multi-Temporal Remote Sensing Images (MT-RSIs)
The performance of existing RS-CD methods is attributed to training on large annotated datasets.
This paper proposes an unsupervised CD method based on deep metric learning that can deal with both of these issues.
arXiv Detail & Related papers (2023-03-16T17:52:45Z) - Anomaly Detection for Multivariate Time Series on Large-scale Fluid
Handling Plant Using Two-stage Autoencoder [1.911678487931003]
This paper focuses on anomaly detection for time series data in large-scale fluid handling plants with dynamic components.
We introduce a Two-Stage AutoEncoder (TSAE) as an anomaly detection method suitable for such plants.
arXiv Detail & Related papers (2022-05-20T01:41:39Z) - Near out-of-distribution detection for low-resolution radar
micro-Doppler signatures [2.029924828197095]
Near out-of-distribution detection (OOD) aims at discriminating semantically similar data points without the supervision required for classification.
This paper puts forward an OOD use case for radar targets detection to other kinds of sensors and detection scenarios.
arXiv Detail & Related papers (2022-05-12T08:27:14Z) - SEA: Bridging the Gap Between One- and Two-stage Detector Distillation
via SEmantic-aware Alignment [76.80165589520385]
We name our method SEA (SEmantic-aware Alignment) distillation given the nature of abstracting dense fine-grained information.
It achieves new state-of-the-art results on the challenging object detection task on both one- and two-stage detectors.
arXiv Detail & Related papers (2022-03-02T04:24:05Z) - Mitigating the Mutual Error Amplification for Semi-Supervised Object
Detection [92.52505195585925]
We propose a Cross Teaching (CT) method, aiming to mitigate the mutual error amplification by introducing a rectification mechanism of pseudo labels.
In contrast to existing mutual teaching methods that directly treat predictions from other detectors as pseudo labels, we propose the Label Rectification Module (LRM)
arXiv Detail & Related papers (2022-01-26T03:34:57Z) - Detection of Anomalies and Faults in Industrial IoT Systems by Data
Mining: Study of CHRIST Osmotron Water Purification System [15.06694204377327]
This article is about industrial pharmaceutical systems and more specifically, water purification systems.
Almost every pharmaceutical company has a water purifying unit as a part of its interdependent systems.
Early detection of faults right at the edge can significantly decrease maintenance costs and improve safety and output quality.
arXiv Detail & Related papers (2020-09-08T11:31:43Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.