Attribute-Based Robotic Grasping with Data-Efficient Adaptation
- URL: http://arxiv.org/abs/2501.02149v1
- Date: Sat, 04 Jan 2025 00:37:17 GMT
- Title: Attribute-Based Robotic Grasping with Data-Efficient Adaptation
- Authors: Yang Yang, Houjian Yu, Xibai Lou, Yuanhao Liu, Changhyun Choi,
- Abstract summary: We present an end-to-end encoder-decoder network to learn attribute-based robotic grasping.
Our approach achieves over 81% instance grasping success rate on unknown objects.
- Score: 19.683833436076313
- License:
- Abstract: Robotic grasping is one of the most fundamental robotic manipulation tasks and has been the subject of extensive research. However, swiftly teaching a robot to grasp a novel target object in clutter remains challenging. This paper attempts to address the challenge by leveraging object attributes that facilitate recognition, grasping, and rapid adaptation to new domains. In this work, we present an end-to-end encoder-decoder network to learn attribute-based robotic grasping with data-efficient adaptation capability. We first pre-train the end-to-end model with a variety of basic objects to learn generic attribute representation for recognition and grasping. Our approach fuses the embeddings of a workspace image and a query text using a gated-attention mechanism and learns to predict instance grasping affordances. To train the joint embedding space of visual and textual attributes, the robot utilizes object persistence before and after grasping. Our model is self-supervised in a simulation that only uses basic objects of various colors and shapes but generalizes to novel objects in new environments. To further facilitate generalization, we propose two adaptation methods, adversarial adaption and one-grasp adaptation. Adversarial adaptation regulates the image encoder using augmented data of unlabeled images, whereas one-grasp adaptation updates the overall end-to-end model using augmented data from one grasp trial. Both adaptation methods are data-efficient and considerably improve instance grasping performance. Experimental results in both simulation and the real world demonstrate that our approach achieves over 81% instance grasping success rate on unknown objects, which outperforms several baselines by large margins.
Related papers
- Constrained Equation Learner Networks for Precision-Preserving
Extrapolation of Robotic Skills [6.144680854063937]
This paper presents a novel supervised learning framework that addresses the trajectory adaptation problem in Programming by Demonstrations.
We exploit Equation Learner Networks to learn a set of analytical expressions and use them as basis functions.
Our approach addresses three main difficulties in adapting robotic trajectories: 1) minimizing the distortion of the trajectory for new adaptations; 2) preserving the precision of the adaptations; and 3) dealing with the lack of intuition about the structure of basis functions.
arXiv Detail & Related papers (2023-11-04T18:16:18Z) - Class Incremental Learning with Pre-trained Vision-Language Models [59.15538370859431]
We propose an approach to exploiting pre-trained vision-language models (e.g. CLIP) that enables further adaptation.
Experiments on several conventional benchmarks consistently show a significant margin of improvement over the current state-of-the-art.
arXiv Detail & Related papers (2023-10-31T10:45:03Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.
Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.
Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkill is a novel framework that uses a differentiable physics simulator for skill abstraction to solve deformable object manipulation tasks.
In particular, we first obtain short-horizon skills using individual tools from a gradient-based simulator.
We then learn a neural skill abstractor from the demonstration trajectories which takes RGBD images as input.
arXiv Detail & Related papers (2022-03-31T17:59:38Z) - ProFormer: Learning Data-efficient Representations of Body Movement with
Prototype-based Feature Augmentation and Visual Transformers [31.908276711898548]
Methods for data-efficient recognition from body poses increasingly leverage skeleton sequences structured as image-like arrays.
We look at this paradigm from the perspective of transformer networks, for the first time exploring visual transformers as data-efficient encoders of skeleton movement.
In our pipeline, body pose sequences cast as image-like representations are converted into patch embeddings and then passed to a visual transformer backbone optimized with deep metric learning.
arXiv Detail & Related papers (2022-02-23T11:11:54Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z) - Attribute-Based Robotic Grasping with One-Grasp Adaptation [9.255994599301712]
We introduce an end-to-end learning method of attribute-based robotic grasping with one-grasp adaptation capability.
Our approach fuses the embeddings of a workspace image and a query text using a gated-attention mechanism and learns to predict instance grasping affordances.
Experimental results in both simulation and the real world demonstrate that our approach achieves over 80% instance grasping success rate on unknown objects.
arXiv Detail & Related papers (2021-04-06T03:40:46Z) - One to Many: Adaptive Instrument Segmentation via Meta Learning and
Dynamic Online Adaptation in Robotic Surgical Video [71.43912903508765]
MDAL is a dynamic online adaptive learning scheme for instrument segmentation in robot-assisted surgery.
It learns the general knowledge of instruments and the fast adaptation ability through the video-specific meta-learning paradigm.
It outperforms other state-of-the-art methods on two datasets.
arXiv Detail & Related papers (2021-03-24T05:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.