Attribute-Based Robotic Grasping with One-Grasp Adaptation
- URL: http://arxiv.org/abs/2104.02271v1
- Date: Tue, 6 Apr 2021 03:40:46 GMT
- Title: Attribute-Based Robotic Grasping with One-Grasp Adaptation
- Authors: Yang Yang, Yuanhao Liu, Hengyue Liang, Xibai Lou, Changhyun Choi
- Abstract summary: We introduce an end-to-end learning method of attribute-based robotic grasping with one-grasp adaptation capability.
Our approach fuses the embeddings of a workspace image and a query text using a gated-attention mechanism and learns to predict instance grasping affordances.
Experimental results in both simulation and the real world demonstrate that our approach achieves over 80% instance grasping success rate on unknown objects.
- Score: 9.255994599301712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robotic grasping is one of the most fundamental robotic manipulation tasks
and has been actively studied. However, how to quickly teach a robot to grasp a
novel target object in clutter remains challenging. This paper attempts to
tackle the challenge by leveraging object attributes that facilitate
recognition, grasping, and quick adaptation. In this work, we introduce an
end-to-end learning method of attribute-based robotic grasping with one-grasp
adaptation capability. Our approach fuses the embeddings of a workspace image
and a query text using a gated-attention mechanism and learns to predict
instance grasping affordances. Besides, we utilize object persistence before
and after grasping to learn a joint metric space of visual and textual
attributes. Our model is self-supervised in a simulation that only uses basic
objects of various colors and shapes but generalizes to novel objects and
real-world scenes. We further demonstrate that our model is capable of adapting
to novel objects with only one grasp data and improving instance grasping
performance significantly. Experimental results in both simulation and the real
world demonstrate that our approach achieves over 80\% instance grasping
success rate on unknown objects, which outperforms several baselines by large
margins.
Related papers
- Self-Explainable Affordance Learning with Embodied Caption [63.88435741872204]
We introduce Self-Explainable Affordance learning (SEA) with embodied caption.
SEA enables robots to articulate their intentions and bridge the gap between explainable vision-language caption and visual affordance learning.
We propose a novel model to effectively combine affordance grounding with self-explanation in a simple but efficient manner.
arXiv Detail & Related papers (2024-04-08T15:22:38Z) - Learning active tactile perception through belief-space control [21.708391958446274]
We propose a method that autonomously learns tactile exploration policies by developing a generative world model.
We evaluate our method on three simulated tasks where the goal is to estimate a desired object property.
We find that our method is able to discover policies that efficiently gather information about the desired property in an intuitive manner.
arXiv Detail & Related papers (2023-11-30T21:54:42Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
We learn a sequence of actions that utilize the environment to change the object's pose.
Our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment.
We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace.
arXiv Detail & Related papers (2023-10-26T21:28:23Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.
Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.
Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Lifelong Ensemble Learning based on Multiple Representations for
Few-Shot Object Recognition [6.282068591820947]
We present a lifelong ensemble learning approach based on multiple representations to address the few-shot object recognition problem.
To facilitate lifelong learning, each approach is equipped with a memory unit for storing and retrieving object information instantly.
We have performed extensive sets of experiments to assess the performance of the proposed approach in offline, and open-ended scenarios.
arXiv Detail & Related papers (2022-05-04T10:29:10Z) - Learning Generalizable Dexterous Manipulation from Human Grasp
Affordance [11.060931225148936]
Dexterous manipulation with a multi-finger hand is one of the most challenging problems in robotics.
Recent progress in imitation learning has largely improved the sample efficiency compared to Reinforcement Learning.
We propose to learn dexterous manipulation using large-scale demonstrations with diverse 3D objects in a category.
arXiv Detail & Related papers (2022-04-05T16:26:22Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkill is a novel framework that uses a differentiable physics simulator for skill abstraction to solve deformable object manipulation tasks.
In particular, we first obtain short-horizon skills using individual tools from a gradient-based simulator.
We then learn a neural skill abstractor from the demonstration trajectories which takes RGBD images as input.
arXiv Detail & Related papers (2022-03-31T17:59:38Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.