論文の概要: The Application of Large Language Models in Recommendation Systems
- arxiv url: http://arxiv.org/abs/2501.02178v2
- Date: Fri, 17 Jan 2025 08:44:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:56:59.292580
- Title: The Application of Large Language Models in Recommendation Systems
- Title(参考訳): 推薦システムにおける大規模言語モデルの応用
- Authors: Peiyang Yu, Zeqiu Xu, Jiani Wang, Xiaochuan Xu,
- Abstract要約: 大規模言語モデルは、非構造化データソースへのレコメンデーションフレームワークの利用を可能にする強力なツールである。
本稿では,レコメンデーションシステム,特に電子商取引,ソーシャルメディアプラットフォーム,ストリーミングサービス,教育技術におけるLLMの適用について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The integration of Large Language Models into recommendation frameworks presents key advantages for personalization and adaptability of experiences to the users. Classic methods of recommendations, such as collaborative filtering and content-based filtering, are seriously limited in the solution of cold-start problems, sparsity of data, and lack of diversity in information considered. LLMs, of which GPT-4 is a good example, have emerged as powerful tools that enable recommendation frameworks to tap into unstructured data sources such as user reviews, social interactions, and text-based content. By analyzing these data sources, LLMs improve the accuracy and relevance of recommendations, thereby overcoming some of the limitations of traditional approaches. This work discusses applications of LLMs in recommendation systems, especially in electronic commerce, social media platforms, streaming services, and educational technologies. This showcases how LLMs enrich recommendation diversity, user engagement, and the system's adaptability; yet it also looks into the challenges connected to their technical implementation. This can also be presented as a study that shows the potential of LLMs for changing user experiences and making innovation possible in industries.
- Abstract(参考訳): 大規模言語モデルのレコメンデーションフレームワークへの統合は、ユーザへのエクスペリエンスのパーソナライズと適応性に重要な利点をもたらします。
協調フィルタリングやコンテンツに基づくフィルタリングといった古典的な勧告手法は、コールドスタート問題の解決、データの分散、考慮された情報の多様性の欠如など、極めて制限されている。
GPT-4が好例であるLDMは,ユーザレビューやソーシャルインタラクション,テキストベースのコンテンツなど,非構造化データソースへのレコメンデーションフレームワークの利用を可能にする強力なツールとして登場した。
これらのデータソースを解析することにより、LLMはレコメンデーションの正確性と関連性を改善し、従来のアプローチの制限を克服する。
本稿では,レコメンデーションシステム,特に電子商取引,ソーシャルメディアプラットフォーム,ストリーミングサービス,教育技術におけるLLMの適用について論じる。
このことは、LLMがレコメンデーションの多様性、ユーザエンゲージメント、システムの適応性を高める方法を示している。
これはまた、LLMsがユーザエクスペリエンスを変え、業界でイノベーションを可能にする可能性を示す研究として提示される。
関連論文リスト
- Enhanced Recommendation Combining Collaborative Filtering and Large Language Models [0.0]
大規模言語モデル(LLM)はレコメンデーションシステムに新たなブレークスルーを提供する。
本稿では,協調フィルタリングとLLMを組み合わせたレコメンデーション手法を提案する。
その結果,協調フィルタリングとLCMに基づくハイブリッドモデルは,精度,リコール,ユーザ満足度を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2024-12-25T00:23:53Z) - LLM is Knowledge Graph Reasoner: LLM's Intuition-aware Knowledge Graph Reasoning for Cold-start Sequential Recommendation [47.34949656215159]
大規模言語モデル(LLM)は、Webデータから学習された豊富な知識を持つデータベースとみなすことができる。
LLMの直感認識型知識グラフ推論モデル(LIKR)を提案する。
本モデルは,コールドスタートシーケンシャルレコメンデーションシナリオにおいて,最先端レコメンデーション手法より優れている。
論文 参考訳(メタデータ) (2024-12-17T01:52:15Z) - Real-Time Personalization for LLM-based Recommendation with Customized In-Context Learning [57.28766250993726]
この研究は、モデル更新なしに動的なユーザ関心に適応することを検討する。
既存のLarge Language Model (LLM)ベースのレコメンダは、レコメンデーションチューニング中にコンテキスト内学習能力を失うことが多い。
本稿では,レコメンデーション固有のインコンテキスト学習をリアルタイムレコメンデーションにカスタマイズするRecICLを提案する。
論文 参考訳(メタデータ) (2024-10-30T15:48:36Z) - LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Llm-driven knowlEdge Adaptive RecommeNdation (LEARN)フレームワークは、オープンワールドの知識と協調的な知識をシナジする。
オープンワールドの知識と協調的な知識を相乗化するLlm-driven knowlEdge Adaptive RecommeNdation (LEARN) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-07T04:00:30Z) - Emerging Synergies Between Large Language Models and Machine Learning in
Ecommerce Recommendations [19.405233437533713]
大規模言語モデル(LLM)は、言語理解と生成の基本的なタスクにおいて優れた機能を持つ。
機能エンコーダとしてLLMを用いたユーザとアイテムの表現を学習するための代表的なアプローチを提案する。
次に、協調フィルタリング強化レコメンデーションシステムのためのLLM技術の最新技術について概説した。
論文 参考訳(メタデータ) (2024-03-05T08:31:00Z) - Tapping the Potential of Large Language Models as Recommender Systems: A Comprehensive Framework and Empirical Analysis [91.5632751731927]
ChatGPTのような大規模言語モデルは、一般的なタスクを解く際、顕著な能力を示した。
本稿では,レコメンデーションタスクにおけるLLMの活用のための汎用フレームワークを提案し,レコメンデーションタスクとしてのLLMの機能に着目した。
提案手法は,提案手法が推薦結果に与える影響を解析し,提案手法とモデルアーキテクチャ,パラメータスケール,コンテキスト長について検討する。
論文 参考訳(メタデータ) (2024-01-10T08:28:56Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。