LoRTA: Low Rank Tensor Adaptation of Large Language Models
- URL: http://arxiv.org/abs/2410.04060v3
- Date: Sun, 02 Feb 2025 17:56:53 GMT
- Title: LoRTA: Low Rank Tensor Adaptation of Large Language Models
- Authors: Ignacio Hounie, Charilaos Kanatsoulis, Arnuv Tandon, Alejandro Ribeiro,
- Abstract summary: Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.
We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.
Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
- Score: 70.32218116940393
- License:
- Abstract: Low Rank Adaptation (LoRA) is a popular Parameter Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks. LoRA parameterizes model updates using low-rank matrices at each layer, significantly reducing the number of trainable parameters and, consequently, resource requirements during fine-tuning. However, the lower bound on the number of trainable parameters remains high due to the use of the low-rank matrix model. Recent works have addressed this limitation by proposing low rank tensor parameterizations for model updates. However, they only exploit redundancy across layers, or tensorize individual matrices using ad-hoc schemes that introduce additional hyperparameters. In this work, we propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation compared to existing matrix and tensor based PEFT methods. Our experiments on Natural Language Understanding, Instruction Tuning, Preference Optimization and Protein Folding benchmarks demonstrate that our method can achieve a reduction in the number of parameters while maintaining comparable performance.
Related papers
- ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.
Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - Expanding Sparse Tuning for Low Memory Usage [103.43560327427647]
We propose a method named SNELL (Sparse tuning with kerNELized LoRA) for sparse tuning with low memory usage.
To achieve low memory usage, SNELL decomposes the tunable matrix for sparsification into two learnable low-rank matrices.
A competition-based sparsification mechanism is further proposed to avoid the storage of tunable weight indexes.
arXiv Detail & Related papers (2024-11-04T04:58:20Z) - NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models [26.808251361020066]
Fine-tuning pre-trained models is resource-intensive and laborious.
One widely adopted PEFT technique, Low-Rank Adaptation (LoRA), freezes the pre-trained model weights.
NEAT introduces a lightweight neural network that takes pre-trained weights as input and learns a nonlinear transformation to approximate cumulative weight updates.
arXiv Detail & Related papers (2024-10-02T17:29:23Z) - Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning [38.80020737321214]
We propose a framework for efficient parameter fine-tuning (PEFT) based on structured unrestricted-rank matrices (SURM)
SURMs achieve 5-7% accuracy gains on various image classification tasks while replacing low-rank matrices in LoRA.
It also results in up to 12x reduction of the number of parameters in adapters (with virtually no loss in quality) on the GLUE benchmark.
arXiv Detail & Related papers (2024-06-25T17:26:05Z) - Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation [12.07880147193174]
We show that by leveraging the inherent low-dimensional structures of data and compressible dynamics within the model parameters, we can reap the benefits of over parameterization without the computational burdens.
We demonstrate the effectiveness of this approach for deep low-rank matrix completion as well as fine-tuning language models.
arXiv Detail & Related papers (2024-06-06T14:29:49Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
We propose a novel spectrum-aware adaptation framework for generative models.
Our method adjusts both singular values and their basis vectors of pretrained weights.
We introduce Spectral Ortho Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity.
arXiv Detail & Related papers (2024-05-31T17:43:35Z) - ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
We propose the ETHER transformation family, which performs Efficient fineTuning via HypErplane Reflections.
In particular, we introduce ETHER and its relaxation ETHER+, which match or outperform existing PEFT methods with significantly fewer parameters.
arXiv Detail & Related papers (2024-05-30T17:26:02Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
Various parameter-efficient fine-tuning (PEFT) techniques have been proposed to enable computationally efficient fine-tuning while maintaining model performance.
We present LoRETTA, a framework that significantly reduces trainable parameters through tensor-train decomposition.
LoRETTA achieves comparable or better performance than most widely used PEFT methods with up to $100times$ fewer parameters on the LLaMA-2-7B models.
arXiv Detail & Related papers (2024-02-18T01:20:00Z) - IncreLoRA: Incremental Parameter Allocation Method for
Parameter-Efficient Fine-tuning [15.964205804768163]
IncreLoRA is an incremental parameter allocation method that adaptively adds trainable parameters during training.
We conduct extensive experiments on GLUE to demonstrate the effectiveness of IncreLoRA.
arXiv Detail & Related papers (2023-08-23T10:08:10Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.