論文の概要: Distillation-Enhanced Physical Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2501.02232v1
- Date: Sat, 04 Jan 2025 08:38:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:07:27.603832
- Title: Distillation-Enhanced Physical Adversarial Attacks
- Title(参考訳): 蒸留による身体対立攻撃の増強
- Authors: Wei Liu, Yonglin Wu, Chaoqun Li, Zhuodong Liu, Huanqian Yan,
- Abstract要約: 本稿では,知識蒸留を利用した新しい物理対逆攻撃法を提案する。
実験の結果,ステルスを保ちながら攻撃性能を20%向上することがわかった。
- 参考スコア(独自算出の注目度): 8.331369688962335
- License:
- Abstract: The study of physical adversarial patches is crucial for identifying vulnerabilities in AI-based recognition systems and developing more robust deep learning models. While recent research has focused on improving patch stealthiness for greater practical applicability, achieving an effective balance between stealth and attack performance remains a significant challenge. To address this issue, we propose a novel physical adversarial attack method that leverages knowledge distillation. Specifically, we first define a stealthy color space tailored to the target environment to ensure smooth blending. Then, we optimize an adversarial patch in an unconstrained color space, which serves as the 'teacher' patch. Finally, we use an adversarial knowledge distillation module to transfer the teacher patch's knowledge to the 'student' patch, guiding the optimization of the stealthy patch. Experimental results show that our approach improves attack performance by 20%, while maintaining stealth, highlighting its practical value.
- Abstract(参考訳): 物理的敵パッチの研究は、AIベースの認識システムの脆弱性を特定し、より堅牢なディープラーニングモデルを開発するために重要である。
最近の研究は、より実用的な適用性を高めるためにパッチステルスネスの改善に重点を置いているが、ステルスと攻撃性能の効果的なバランスを達成することは大きな課題である。
この問題に対処するために,知識蒸留を利用した新しい物理対逆攻撃法を提案する。
具体的には、まず、スムーズなブレンディングを保証するために、ターゲット環境に合わせたステルス色空間を定義する。
そして、制約のない色空間で対向パッチを最適化し、「教師」パッチとして機能する。
最後に,教師パッチの知識を「学生」パッチに転送するために,敵対的知識蒸留モジュールを使用し,ステルスパッチの最適化を導く。
実験結果から,本手法はステルスを維持しながら攻撃性能を20%向上し,実用的価値を強調した。
関連論文リスト
- Environmental Matching Attack Against Unmanned Aerial Vehicles Object Detection [37.77615360932841]
無人航空機の物体検出技術はディープニューラルネットワーク(DNN)に依存している
UAV領域の既存のアルゴリズムによって生成された敵パッチは、敵パッチの自然性にはほとんど注意を払わない。
本研究では,環境マッチング攻撃(EMA)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-13T09:56:57Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
我々は、攻撃最適化中に局所最小限を避けるための誘導機構を開発し、G-PGAと呼ばれる新たな攻撃に繋がる。
修正された攻撃では、ランダムに再起動したり、多数の攻撃を繰り返したり、最適なステップサイズを検索したりする必要がありません。
効果的な攻撃以上に、G-PGAは敵防御における勾配マスキングによる解離性堅牢性を明らかにするための診断ツールとして用いられる。
論文 参考訳(メタデータ) (2022-12-30T18:45:23Z) - Simultaneously Optimizing Perturbations and Positions for Black-box
Adversarial Patch Attacks [13.19708582519833]
敵パッチは、ディープニューラルネットワークの堅牢性に重大なリスクをもたらす、現実世界の敵攻撃の重要な形態である。
従来の方法は、貼付位置を固定しながら摂動値を最適化するか、パッチの内容を修正しながら位置を操作することにより、敵パッチを生成する。
敵パッチの位置と摂動を同時に最適化し,ブラックボックス設定において高い攻撃成功率が得られる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-12-26T02:48:37Z) - Benchmarking Adversarial Patch Against Aerial Detection [11.591143898488312]
適応パッチに基づく新しい物理攻撃(AP-PA)フレームワークを提案する。
AP-PAは、物理力学と様々なスケールに適応する逆パッチを生成する。
航空探知作業における敵パッチの攻撃効果を評価するため, 包括的, 一貫性, 厳密なベンチマークを最初に確立した。
論文 参考訳(メタデータ) (2022-10-30T07:55:59Z) - ROPUST: Improving Robustness through Fine-tuning with Photonic
Processors and Synthetic Gradients [65.52888259961803]
ROPUSTは、頑健な事前学習モデルを活用し、その堅牢性を高めるためのシンプルで効率的な手法である。
我々は,ロバストベンチの4つの攻撃に対して,9つの異なるモデルを用いて実験を行った。
ROPUSTは,最先端の位相探索技術でも有効であることを示す。
論文 参考訳(メタデータ) (2021-07-06T12:03:36Z) - Inconspicuous Adversarial Patches for Fooling Image Recognition Systems
on Mobile Devices [8.437172062224034]
敵パッチと呼ばれる敵の例の変種は、強力な攻撃能力のために研究者の注意を引き付けている。
1枚の画像で逆パッチを生成する手法を提案する。
提案手法は,ホワイトボックス設定における強力な攻撃能力とブラックボックス設定における優れた転送性を示す。
論文 参考訳(メタデータ) (2021-06-29T09:39:34Z) - Generating Adversarial yet Inconspicuous Patches with a Single Image [15.217367754000913]
そこで本研究では, 対角的かつ不明瞭なパッチを単一画像で生成する手法を提案する。
提案手法では,複数スケールのジェネレータと識別器を用いて,逆パッチを粗大な方法で生成する。
我々のap-proachは、ホワイトボックスとブラックボックスの両方で強力な攻撃能力を示している。
論文 参考訳(メタデータ) (2020-09-21T11:56:01Z) - Adversarial Training against Location-Optimized Adversarial Patches [84.96938953835249]
反対のパッチ: 明らかに見えますが 反対に作られた長方形のパッチです
まず、画像内の位置を積極的に最適化しながら、相手パッチを得るための実践的なアプローチを考案する。
CIFAR10とGTSRBでは,これらの位置最適化された対向パッチに対して対向トレーニングを適用し,ロバスト性を著しく向上した。
論文 参考訳(メタデータ) (2020-05-05T16:17:00Z) - Certified Defenses for Adversarial Patches [72.65524549598126]
敵パッチ攻撃は、現実世界のコンピュータビジョンシステムに対する最も実用的な脅威モデルの一つである。
本稿では,パッチアタックに対する認証と実証的防御について検討する。
論文 参考訳(メタデータ) (2020-03-14T19:57:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。