Hyperbolic Contrastive Learning for Hierarchical 3D Point Cloud Embedding
- URL: http://arxiv.org/abs/2501.02285v2
- Date: Tue, 07 Jan 2025 13:38:34 GMT
- Title: Hyperbolic Contrastive Learning for Hierarchical 3D Point Cloud Embedding
- Authors: Yingjie Liu, Pengyu Zhang, Ziyao He, Mingsong Chen, Xuan Tang, Xian Wei,
- Abstract summary: We extend the 3D Point Cloud modality in hyperbolic multi-modal contrastive pre-training.
We also explore the entailment, modality gap, and alignment regularizers for learning hierarchical 3D embeddings.
- Score: 21.50985015159827
- License:
- Abstract: Hyperbolic spaces allow for more efficient modeling of complex, hierarchical structures, which is particularly beneficial in tasks involving multi-modal data. Although hyperbolic geometries have been proven effective for language-image pre-training, their capabilities to unify language, image, and 3D Point Cloud modalities are under-explored. We extend the 3D Point Cloud modality in hyperbolic multi-modal contrastive pre-training. Additionally, we explore the entailment, modality gap, and alignment regularizers for learning hierarchical 3D embeddings and facilitating the transfer of knowledge from both Text and Image modalities. These regularizers enable the learning of intra-modal hierarchy within each modality and inter-modal hierarchy across text, 2D images, and 3D Point Clouds. Experimental results demonstrate that our proposed training strategy yields an outstanding 3D Point Cloud encoder, and the obtained 3D Point Cloud hierarchical embeddings significantly improve performance on various downstream tasks.
Related papers
- CLIP-GS: Unifying Vision-Language Representation with 3D Gaussian Splatting [88.24743308058441]
We present CLIP-GS, a novel multimodal representation learning framework grounded in 3DGS.
We develop an efficient way to generate triplets of 3DGS, images, and text, facilitating CLIP-GS in learning unified multimodal representations.
arXiv Detail & Related papers (2024-12-26T09:54:25Z) - Pic@Point: Cross-Modal Learning by Local and Global Point-Picture Correspondence [0.0]
We present Pic@Point, an effective contrastive learning method based on structural 2D-3D correspondences.
We leverage image cues rich in semantic and contextual knowledge to provide a guiding signal for point cloud representations.
arXiv Detail & Related papers (2024-10-12T12:43:41Z) - Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3D point cloud sequences serve as one of the most common and practical representation modalities of real-world environments.
We propose a novel generic representation called textitStructured Point Cloud Videos (SPCVs)
SPCVs re-organizes a point cloud sequence as a 2D video with spatial smoothness and temporal consistency, where the pixel values correspond to the 3D coordinates of points.
arXiv Detail & Related papers (2024-03-02T08:18:57Z) - UniM-OV3D: Uni-Modality Open-Vocabulary 3D Scene Understanding with Fine-Grained Feature Representation [46.998093729036334]
We propose a unified multimodal 3D open-vocabulary scene understanding network, namely UniM-OV3D.
To better integrate global and local features of the point clouds, we design a hierarchical point cloud feature extraction module.
To facilitate the learning of coarse-to-fine point-semantic representations from captions, we propose the utilization of hierarchical 3D caption pairs.
arXiv Detail & Related papers (2024-01-21T04:13:58Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World
Point Cloud Data [80.42480679542697]
We propose Contrastive Language-Image-Point Cloud Pretraining (CLIP$2$) to learn the transferable 3D point cloud representation in realistic scenarios.
Specifically, we exploit naturally-existed correspondences in 2D and 3D scenarios, and build well-aligned and instance-based text-image-point proxies from those complex scenarios.
arXiv Detail & Related papers (2023-03-22T09:32:45Z) - CLR-GAM: Contrastive Point Cloud Learning with Guided Augmentation and
Feature Mapping [12.679625717350113]
We present CLR-GAM, a contrastive learning-based framework with Guided Augmentation (GA) for efficient dynamic exploration strategy.
We empirically demonstrate that the proposed approach achieves state-of-the-art performance on both simulated and real-world 3D point cloud datasets.
arXiv Detail & Related papers (2023-02-28T04:38:52Z) - CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D
Point Cloud Understanding [2.8661021832561757]
CrossPoint is a simple cross-modal contrastive learning approach to learn transferable 3D point cloud representations.
Our approach outperforms the previous unsupervised learning methods on a diverse range of downstream tasks including 3D object classification and segmentation.
arXiv Detail & Related papers (2022-03-01T18:59:01Z) - Spatio-temporal Self-Supervised Representation Learning for 3D Point
Clouds [96.9027094562957]
We introduce a-temporal representation learning framework, capable of learning from unlabeled tasks.
Inspired by how infants learn from visual data in the wild, we explore rich cues derived from the 3D data.
STRL takes two temporally-related frames from a 3D point cloud sequence as the input, transforms it with the spatial data augmentation, and learns the invariant representation self-supervisedly.
arXiv Detail & Related papers (2021-09-01T04:17:11Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.