Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations
- URL: http://arxiv.org/abs/2501.02409v2
- Date: Sat, 01 Feb 2025 05:30:20 GMT
- Title: Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations
- Authors: Zaikang Lin, Sei Chang, Aaron Zweig, Minseo Kang, Elham Azizi, David A. Knowles,
- Abstract summary: We propose PerturbODE, a novel framework that incorporates biologically informative neural ordinary differential equations (neural ODEs) to model cell state trajectories under perturbations.<n>We demonstrate PerturbODE's efficacy in trajectory prediction and GRN inference across simulated and real over-expression datasets.
- Score: 4.34315395377214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern high-throughput biological datasets with thousands of perturbations provide the opportunity for large-scale discovery of causal graphs that represent the regulatory interactions between genes. Differentiable causal graphical models have been proposed to infer a gene regulatory network (GRN) from large scale interventional datasets, capturing the causal gene regulatory relationships from genetic perturbations. However, existing models are limited in their expressivity and scalability while failing to address the dynamic nature of biological processes such as cellular differentiation. We propose PerturbODE, a novel framework that incorporates biologically informative neural ordinary differential equations (neural ODEs) to model cell state trajectories under perturbations and derive the causal GRN from the neural ODE's parameters. We demonstrate PerturbODE's efficacy in trajectory prediction and GRN inference across simulated and real over-expression datasets.
Related papers
- A scalable gene network model of regulatory dynamics in single cells [88.48246132084441]
We introduce a Functional Learnable model of Cell dynamicS, FLeCS, that incorporates gene network structure into coupled differential equations to model gene regulatory functions.
Given (pseudo)time-series single-cell data, FLeCS accurately infers cell dynamics at scale.
arXiv Detail & Related papers (2025-03-25T19:19:21Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.
Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.
It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Large-Scale Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
We propose a novel machine learning approach for inferring causal variables of a target variable from observations.
By employing a local-inference strategy, our approach scales with linear complexity in the number of variables, efficiently scaling up to thousands of variables.
Empirical results demonstrate superior performance in identifying causal relationships within large-scale gene regulatory networks.
arXiv Detail & Related papers (2024-08-29T02:21:11Z) - Inference of dynamical gene regulatory networks from single-cell data
with physics informed neural networks [0.0]
We show how physics-informed neural networks (PINNs) can be used to infer the parameters of predictive, dynamical GRNs.
Specifically we study GRNs that exhibit bifurcation behavior and can therefore model cell differentiation.
arXiv Detail & Related papers (2024-01-14T21:43:10Z) - Causal Inference in Gene Regulatory Networks with GFlowNet: Towards
Scalability in Large Systems [87.45270862120866]
We introduce Swift-DynGFN as a novel framework that enhances causal structure learning in GRNs.
Specifically, Swift-DynGFN exploits gene-wise independence to boost parallelization and to lower computational cost.
arXiv Detail & Related papers (2023-10-05T14:59:19Z) - DiscoGen: Learning to Discover Gene Regulatory Networks [30.83574314774383]
Accurately inferring Gene Regulatory Networks (GRNs) is a critical and challenging task in biology.
Recent advances in neural network-based causal discovery methods have significantly improved causal discovery.
Applying state-of-the-art causal discovery methods in biology poses challenges, such as noisy data and a large number of samples.
We introduce DiscoGen, a neural network-based GRN discovery method that can denoise gene expression measurements and handle interventional data.
arXiv Detail & Related papers (2023-04-12T13:02:49Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
Gene regulatory networks (GRN) describe interactions between genes and their products that control gene expression and cellular function.
Existing methods either focus on challenge (1), identifying cyclic structure from dynamics, or on challenge (2) learning complex Bayesian posteriors over DAGs, but not both.
In this paper we leverage the fact that it is possible to estimate the "velocity" of gene expression with RNA velocity techniques to develop an approach that addresses both challenges.
arXiv Detail & Related papers (2023-02-08T16:36:40Z) - Inferring Gene Regulatory Neural Networks for Bacterial Decision Making
in Biofilms [4.459301404374565]
Bacterial cells are sensitive to a range of external signals used to learn the environment.
An inherited Gene Regulatory Neural Network (GRNN) behavior enables the cellular decision-making.
GRNNs can perform computational tasks for bio-hybrid computing systems.
arXiv Detail & Related papers (2023-01-10T22:07:33Z) - Granger causal inference on DAGs identifies genomic loci regulating
transcription [77.58911272503771]
GrID-Net is a framework based on graph neural networks with lagged message passing for Granger causal inference on DAG-structured systems.
Our application is the analysis of single-cell multimodal data to identify genomic loci that mediate the regulation of specific genes.
arXiv Detail & Related papers (2022-10-18T21:15:10Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Neural network facilitated ab initio derivation of linear formula: A
case study on formulating the relationship between DNA motifs and gene
expression [8.794181445664243]
We propose a framework for ab initio derivation of sequence motifs and linear formula using a new approach based on the interpretable neural network model.
We showed that this linear model could predict gene expression levels using promoter sequences with a performance comparable to deep neural network models.
arXiv Detail & Related papers (2022-08-19T22:29:30Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Gene Regulatory Network Inference with Latent Force Models [1.2691047660244335]
Delays in protein synthesis cause a confounding effect when constructing Gene Regulatory Networks (GRNs) from RNA-sequencing time-series data.
We present a model which incorporates translation delays by combining mechanistic equations and Bayesian approaches to fit to experimental data.
arXiv Detail & Related papers (2020-10-06T09:03:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.