論文の概要: LLMPC: Large Language Model Predictive Control
- arxiv url: http://arxiv.org/abs/2501.02486v2
- Date: Tue, 25 Feb 2025 02:25:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:19:56.264766
- Title: LLMPC: Large Language Model Predictive Control
- Title(参考訳): LLMPC: 大規模言語モデル予測制御
- Authors: Gabriel Maher,
- Abstract要約: 我々は,大規模言語モデルが計画プロンプトを使用する場合,暗黙的な計画コスト関数最小化機能として機能することを示す。
LLMを用いて計画するための統一的なMPCフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recent advancements in prompting techniques for Large Language Models (LLMs) have improved their reasoning, planning, and action abilities. This paper examines these prompting techniques through the lens of model predictive control (MPC). We show that LLMs act as implicit planning cost function minimizers when planning prompts are used. We propose a unified MPC framework for planning with LLMs and demonstrate improved performance over few shot prompting on several planning benchmarks.
- Abstract(参考訳): 近年,Large Language Models (LLMs) の推論,計画,行動能力の向上が進んでいる。
本稿では,モデル予測制御(MPC)のレンズによるこれらのプロンプト技術について検討する。
計画プロンプトを使用する場合,LCMは暗黙の計画コスト関数最小化器として機能することを示す。
LLMを用いて計画するための統一的なMPCフレームワークを提案する。
関連論文リスト
- Non-myopic Generation of Language Models for Reasoning and Planning [45.75146679449453]
本稿では,モデル予測制御を利用した予測復号化手法を提案する。
我々の実験では、数学、コーディング、エージェントの幅広いタスクにおいて、大幅な改善が示されている。
論文 参考訳(メタデータ) (2024-10-22T17:13:38Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
知識グラフ(KG)から得られた計画データを用いて,大規模言語モデル(LLM)計画能力を向上するための新しいフレームワークを提案する。
KGデータで微調整されたLLMは、計画能力を向上し、検索を含む複雑なQAタスクを処理するのがより適している。
論文 参考訳(メタデータ) (2024-06-20T13:07:38Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - Revisiting OPRO: The Limitations of Small-Scale LLMs as Optimizers [15.809293135844756]
比較的小規模な言語モデル(LLM)を用いた自動プロンプトのためのOPROを再検討する。
OPROは小規模なLLMにおいて限られた有効性を示し、推論能力は最適化能力を制限している。
我々は,モデル能力と計算コストの両方を考慮するために,将来的な自動プロンプトエンジニアリングを提案する。
論文 参考訳(メタデータ) (2024-05-16T17:33:50Z) - Understanding the planning of LLM agents: A survey [98.82513390811148]
本調査では, LLMをベースとしたエージェント計画の体系的考察を行い, 計画能力の向上を目的とした最近の成果について報告する。
各方向について総合的な分析を行い、研究分野におけるさらなる課題について論じる。
論文 参考訳(メタデータ) (2024-02-05T04:25:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。