論文の概要: Balanced Multi-view Clustering
- arxiv url: http://arxiv.org/abs/2501.02564v3
- Date: Tue, 04 Feb 2025 11:01:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:55:58.093704
- Title: Balanced Multi-view Clustering
- Title(参考訳): バランスの取れたマルチビュークラスタリング
- Authors: Zhenglai Li, Jun Wang, Chang Tang, Xinzhong Zhu, Wei Zhang, Xinwang Liu,
- Abstract要約: マルチビュークラスタリング(MvC)は、さまざまなビューからの情報を統合して、基盤となるデータ構造をキャプチャするモデルの能力を高めることを目的としている。
MvCで広く使われているジョイントトレーニングパラダイムは、多視点情報を十分に活用していない可能性がある。
本稿では,ビュー固有のコントラスト正規化(VCR)を導入し,各ビューの最適化を最適化する新しいマルチビュークラスタリング(BMvC)手法を提案する。
- 参考スコア(独自算出の注目度): 56.17836963920012
- License:
- Abstract: Multi-view clustering (MvC) aims to integrate information from different views to enhance the capability of the model in capturing the underlying data structures. The widely used joint training paradigm in MvC is potentially not fully leverage the multi-view information, since the imbalanced and under-optimized view-specific features caused by the uniform learning objective for all views. For instance, particular views with more discriminative information could dominate the learning process in the joint training paradigm, leading to other views being under-optimized. To alleviate this issue, we first analyze the imbalanced phenomenon in the joint-training paradigm of multi-view clustering from the perspective of gradient descent for each view-specific feature extractor. Then, we propose a novel balanced multi-view clustering (BMvC) method, which introduces a view-specific contrastive regularization (VCR) to modulate the optimization of each view. Concretely, VCR preserves the sample similarities captured from the joint features and view-specific ones into the clustering distributions corresponding to view-specific features to enhance the learning process of view-specific feature extractors. Additionally, a theoretical analysis is provided to illustrate that VCR adaptively modulates the magnitudes of gradients for updating the parameters of view-specific feature extractors to achieve a balanced multi-view learning procedure. In such a manner, BMvC achieves a better trade-off between the exploitation of view-specific patterns and the exploration of view-invariance patterns to fully learn the multi-view information for the clustering task. Finally, a set of experiments are conducted to verify the superiority of the proposed method compared with state-of-the-art approaches on eight benchmark MvC datasets.
- Abstract(参考訳): マルチビュークラスタリング(MvC)は、さまざまなビューからの情報を統合して、基盤となるデータ構造をキャプチャするモデルの能力を高めることを目的としている。
MvCで広く使われているジョイントトレーニングパラダイムは、すべてのビューに対して一様学習目的によって生じる不均衡で最適化されていないビュー特有の特徴のため、多視点情報を十分に活用していない可能性がある。
例えば、より差別的な情報を持つ特定のビューは、共同トレーニングパラダイムにおける学習プロセスを支配し、他のビューは過度に最適化される。
この問題を緩和するために,各ビュー特化特徴抽出器の勾配降下の観点から,多視点クラスタリングの協調学習パラダイムにおける不均衡現象をまず解析する。
そこで本研究では,ビュー固有のコントラスト正規化(VCR)を導入し,各ビューの最適化を最適化する,新しいマルチビュークラスタリング(BMvC)手法を提案する。
具体的には、VCRは、ビュー固有の特徴抽出器の学習プロセスを強化するために、ジョイント特徴とビュー固有の特徴から取得したサンプル類似性を、ビュー固有の特徴に対応するクラスタリング分布に保存する。
さらに、VCRは、ビュー固有の特徴抽出器のパラメータを更新するための勾配の等級を適応的に調整し、バランスの取れた多視点学習手順を実現するための理論的解析を行う。
このようにして、BMvCは、ビュー固有パターンの活用とビュー不変パターンの探索とのトレードオフを向上し、クラスタリングタスクのマルチビュー情報を完全に学習する。
最後に、8つのベンチマークMvCデータセットの最先端手法と比較して提案手法の優位性を検証する実験を行った。
関連論文リスト
- Partial Multi-View Clustering via Meta-Learning and Contrastive Feature Alignment [13.511433241138702]
部分的マルチビュークラスタリング (PVC) は、実世界のアプリケーションにおけるデータ分析における実用的な研究課題である。
既存のクラスタリング手法は、不完全なビューを効果的に扱うのに苦労し、サブ最適クラスタリング性能に繋がる。
非完全多視点データにおける潜在的特徴の一貫性を最大化することを目的とした、コントラスト学習に基づく新しい双対最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-14T19:16:01Z) - A Novel Approach for Effective Multi-View Clustering with
Information-Theoretic Perspective [24.630259061774836]
本研究では,多視点クラスタリングフレームワークを情報理論の観点から検討する,SUMVC(Sufficient Multi-View Clustering)と呼ばれる新しい手法を提案する。
まず,変分解析を用いて一貫した情報を生成する,シンプルで信頼性の高いマルチビュークラスタリング手法SCMVCを開発する。
次に、一貫した情報を強化し、ビュー間の不要な情報を最小限に抑えるのに十分な表現境界を提案する。
論文 参考訳(メタデータ) (2023-09-25T09:41:11Z) - DealMVC: Dual Contrastive Calibration for Multi-view Clustering [78.54355167448614]
マルチビュークラスタリングのための新しいデュアルコントラストキャリブレーションネットワーク(DealMVC)を提案する。
まず、グローバルなクロスビュー特徴を得るための融合機構を設計し、その上で、ビュー特徴類似性グラフと高信頼な擬ラベルグラフを整列させることにより、グローバルなコントラストキャリブレーション損失を提案する。
トレーニング手順の間、対話型クロスビュー機能は、ローカルレベルとグローバルレベルの両方で共同最適化される。
論文 参考訳(メタデータ) (2023-08-17T14:14:28Z) - Deep Multiview Clustering by Contrasting Cluster Assignments [14.767319805995543]
マルチビュークラスタリングは、データサンプルをクラスタに分類することで、マルチビューデータの基盤構造を明らかにすることを目的としている。
本稿では,複数のビュー間でクラスタ割り当てを対比することで,ビュー不変表現を学習し,クラスタリング結果を生成するクロスビューコントラスト学習(C)手法を提案する。
論文 参考訳(メタデータ) (2023-04-21T06:35:54Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
深層不完全なマルチビュークラスタリングのためのクロスビュー部分サンプルとプロトタイプアライメントネットワーク(CPSPAN)を提案する。
従来のコントラストベースの手法とは異なり、インスタンスとインスタンスの対応構築を導くために、ペア観測データアライメントを「プロキシ監視信号」として採用する。
論文 参考訳(メタデータ) (2023-03-28T02:31:57Z) - Self-supervised Discriminative Feature Learning for Multi-view
Clustering [12.725701189049403]
マルチビュークラスタリング(SDMVC)のための自己監視型識別機能学習の提案
具体的には、各ビューの組み込み機能を独立して学習するために、ディープオートエンコーダが適用される。
さまざまなタイプのマルチビューデータセットの実験は、SDMVCが最先端のパフォーマンスを達成することを示しています。
論文 参考訳(メタデータ) (2021-03-28T07:18:39Z) - A Variational Information Bottleneck Approach to Multi-Omics Data
Integration [98.6475134630792]
本稿では,不完全な多視点観測のための深い変動情報ボトルネック (IB) 手法を提案する。
本手法は,対象物に関連のある視点内および視点間相互作用に焦点をあてるために,観測された視点の辺縁および結合表現にISBフレームワークを適用した。
実世界のデータセットの実験から、我々の手法はデータ統合から常に利益を得て、最先端のベンチマークより優れています。
論文 参考訳(メタデータ) (2021-02-05T06:05:39Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Generative Partial Multi-View Clustering [133.36721417531734]
本稿では,不完全なマルチビュー問題に対処するため,GP-MVCと呼ばれる生成的部分的マルチビュークラスタリングモデルを提案する。
まず、マルチビューエンコーダネットワークをトレーニングして、一般的な低次元表現を学習し、次にクラスタリング層を使用して複数のビューをまたいだ一貫したクラスタ構造をキャプチャする。
第2に、他のビューが与える共有表現に基づいて、1つのビュー条件の欠落データを生成するために、ビュー固有の生成敵ネットワークを開発する。
論文 参考訳(メタデータ) (2020-03-29T17:48:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。