A New Interpretation of the Certainty-Equivalence Approach for PAC Reinforcement Learning with a Generative Model
- URL: http://arxiv.org/abs/2501.02652v1
- Date: Sun, 05 Jan 2025 20:37:34 GMT
- Title: A New Interpretation of the Certainty-Equivalence Approach for PAC Reinforcement Learning with a Generative Model
- Authors: Shivaram Kalyanakrishnan, Sheel Shah, Santhosh Kumar Guguloth,
- Abstract summary: This paper presents a theoretical investigation that stems from the surprising finding that CEM may indeed be viewed as an application of TTM.
We obtain (3) improvements in the sample-complexity upper bounds for CEM both for non-stationary and stationary MDPs.
We also show (4) a lower bound on the sample complexity for finite-horizon MDPs, which establishes the minimax-optimality of our upper bound for non-stationary MDPs.
- Score: 5.238591085233903
- License:
- Abstract: Reinforcement learning (RL) enables an agent interacting with an unknown MDP $M$ to optimise its behaviour by observing transitions sampled from $M$. A natural entity that emerges in the agent's reasoning is $\widehat{M}$, the maximum likelihood estimate of $M$ based on the observed transitions. The well-known \textit{certainty-equivalence} method (CEM) dictates that the agent update its behaviour to $\widehat{\pi}$, which is an optimal policy for $\widehat{M}$. Not only is CEM intuitive, it has been shown to enjoy minimax-optimal sample complexity in some regions of the parameter space for PAC RL with a generative model~\citep{Agarwal2020GenModel}. A seemingly unrelated algorithm is the ``trajectory tree method'' (TTM)~\citep{Kearns+MN:1999}, originally developed for efficient decision-time planning in large POMDPs. This paper presents a theoretical investigation that stems from the surprising finding that CEM may indeed be viewed as an application of TTM. The qualitative benefits of this view are (1) new and simple proofs of sample complexity upper bounds for CEM, in fact under a (2) weaker assumption on the rewards than is prevalent in the current literature. Our analysis applies to both non-stationary and stationary MDPs. Quantitatively, we obtain (3) improvements in the sample-complexity upper bounds for CEM both for non-stationary and stationary MDPs, in the regime that the ``mistake probability'' $\delta$ is small. Additionally, we show (4) a lower bound on the sample complexity for finite-horizon MDPs, which establishes the minimax-optimality of our upper bound for non-stationary MDPs in the small-$\delta$ regime.
Related papers
- Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Improved Sample Complexity for Reward-free Reinforcement Learning under
Low-rank MDPs [43.53286390357673]
This paper focuses on reward-free reinforcement learning under low-rank MDP models.
We first provide the first known sample complexity lower bound for any algorithm under low-rank MDPs.
We then propose a novel model-based algorithm, coined RAFFLE, and show it can both find an $epsilon$-optimal policy and achieve an $epsilon$-accurate system identification.
arXiv Detail & Related papers (2023-03-20T04:39:39Z) - Sharper Analysis for Minibatch Stochastic Proximal Point Methods:
Stability, Smoothness, and Deviation [41.082982732100696]
We study a minibatch variant of proximal point (SPP) methods, namely M-SPP, for solving convex composite risk minimization problems.
We show that M-SPP with minibatch-size $n$ and quadratic count $T$ enjoys an in-expectation fast rate of convergence.
In the small-$n$-large-$T$ setting, this result substantially improves the best known results of SPP-type approaches.
arXiv Detail & Related papers (2023-01-09T00:13:34Z) - Near-Optimal Sample Complexity Bounds for Constrained MDPs [25.509556551558834]
We provide minimax upper and lower bounds on the sample complexity for learning near-optimal policies in a discounted CMDP.
We show that learning CMDPs is as easy as MDPs when small constraint violations are allowed, but inherently more difficult when we demand zero constraint violation.
arXiv Detail & Related papers (2022-06-13T15:58:14Z) - Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs [24.256960622176305]
We propose the first (nearly) matching upper and lower bounds on the sample complexity of PAC RL in episodic Markov decision processes.
Our bounds feature a new notion of sub-optimality gap for state-action pairs that we call the deterministic return gap.
Their design and analyses employ novel ideas, including graph-theoretical concepts such as minimum flows and maximum cuts.
arXiv Detail & Related papers (2022-03-17T11:19:41Z) - Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov
Decision Processes [61.11090361892306]
Reward-free reinforcement learning (RL) considers the setting where the agent does not have access to a reward function during exploration.
We show that this separation does not exist in the setting of linear MDPs.
We develop a computationally efficient algorithm for reward-free RL in a $d$-dimensional linear MDP.
arXiv Detail & Related papers (2022-01-26T22:09:59Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z) - A Fully Problem-Dependent Regret Lower Bound for Finite-Horizon MDPs [117.82903457289584]
We derive a novel problem-dependent lower-bound for regret in finite-horizon Markov Decision Processes (MDPs)
We show that our lower-bound is considerably smaller than in the general case and it does not scale with the minimum action gap at all.
We show that this last result is attainable (up to $poly(H)$ terms, where $H$ is the horizon) by providing a regret upper-bound based on policy gaps for an optimistic algorithm.
arXiv Detail & Related papers (2021-06-24T13:46:09Z) - Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
Sample Complexity [67.02490430380415]
We show that model-based MARL achieves a sample complexity of $tilde O(|S||B|(gamma)-3epsilon-2)$ for finding the Nash equilibrium (NE) value up to some $epsilon$ error.
We also show that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm is reward-agnostic, where the algorithm queries state transition samples without reward knowledge.
arXiv Detail & Related papers (2020-07-15T03:25:24Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.