Exploring the Impact of Dataset Statistical Effect Size on Model Performance and Data Sample Size Sufficiency
- URL: http://arxiv.org/abs/2501.02673v2
- Date: Tue, 18 Feb 2025 18:39:05 GMT
- Title: Exploring the Impact of Dataset Statistical Effect Size on Model Performance and Data Sample Size Sufficiency
- Authors: Arya Hatamian, Lionel Levine, Haniyeh Ehsani Oskouie, Majid Sarrafzadeh,
- Abstract summary: We report on two experiments undertaken in an attempt to better ascertain whether or not basic descriptive statistical measures can be indicative of how effective a dataset will be at training a resulting model.
Our results appear to indicate that this is not an effective for determining adequate sample size or projecting model performance, and therefore that additional work is still needed to better prospectively assess adequacy of data.
- Score: 2.444909460562512
- License:
- Abstract: Having a sufficient quantity of quality data is a critical enabler of training effective machine learning models. Being able to effectively determine the adequacy of a dataset prior to training and evaluating a model's performance would be an essential tool for anyone engaged in experimental design or data collection. However, despite the need for it, the ability to prospectively assess data sufficiency remains an elusive capability. We report here on two experiments undertaken in an attempt to better ascertain whether or not basic descriptive statistical measures can be indicative of how effective a dataset will be at training a resulting model. Leveraging the effect size of our features, this work first explores whether or not a correlation exists between effect size, and resulting model performance (theorizing that the magnitude of the distinction between classes could correlate to a classifier's resulting success). We then explore whether or not the magnitude of the effect size will impact the rate of convergence of our learning rate, (theorizing again that a greater effect size may indicate that the model will converge more rapidly, and with a smaller sample size needed). Our results appear to indicate that this is not an effective heuristic for determining adequate sample size or projecting model performance, and therefore that additional work is still needed to better prospectively assess adequacy of data.
Related papers
- Efficient Multi-Agent System Training with Data Influence-Oriented Tree Search [59.75749613951193]
We propose Data Influence-oriented Tree Search (DITS) to guide both tree search and data selection.
By leveraging influence scores, we effectively identify the most impactful data for system improvement.
We derive influence score estimation methods tailored for non-differentiable metrics.
arXiv Detail & Related papers (2025-02-02T23:20:16Z) - Developing a Dataset-Adaptive, Normalized Metric for Machine Learning Model Assessment: Integrating Size, Complexity, and Class Imbalance [0.0]
Traditional metrics like accuracy, F1-score, and precision are frequently used to evaluate machine learning models.
A dataset-adaptive, normalized metric that incorporates dataset characteristics like size, feature dimensionality, class imbalance, and signal-to-noise ratio is presented.
arXiv Detail & Related papers (2024-12-10T07:10:00Z) - Scaling Laws for the Value of Individual Data Points in Machine Learning [55.596413470429475]
We introduce a new perspective by investigating scaling behavior for the value of individual data points.
We provide learning theory to support our scaling law, and we observe empirically that it holds across diverse model classes.
Our work represents a first step towards understanding and utilizing scaling properties for the value of individual data points.
arXiv Detail & Related papers (2024-05-30T20:10:24Z) - Exploring the Impact of Instruction Data Scaling on Large Language
Models: An Empirical Study on Real-World Use Cases [17.431381376675432]
In this paper we explore the performance of large language models based on instruction tuning across different scales of instruction data.
With Bloomz-7B1-mt as the base model, the results show that merely increasing the amount of instruction data leads to continuous improvement in tasks such as open-ended generation.
We propose potential future research directions such as effectively selecting high-quality training data, scaling base models and training methods specialized for hard tasks.
arXiv Detail & Related papers (2023-03-26T14:49:37Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
Building trustworthy, effective, and responsible machine learning systems hinges on understanding how differences in training data and modeling decisions interact to impact predictive performance.
We focus on a particular type of data-model inefficiency, in which adding training data from some sources can actually lower performance evaluated on key sub-groups of the population.
Our results indicate that data-efficiency is a key component of both accurate and trustworthy machine learning.
arXiv Detail & Related papers (2022-11-11T16:48:27Z) - An Exploration of Data Efficiency in Intra-Dataset Task Transfer for
Dialog Understanding [65.75873687351553]
This study explores the effects of varying quantities of target task training data on sequential transfer learning in the dialog domain.
Unintuitively, our data shows that often target task training data size has minimal effect on how sequential transfer learning performs compared to the same model without transfer learning.
arXiv Detail & Related papers (2022-10-21T04:36:46Z) - On the impact of dataset size and class imbalance in evaluating
machine-learning-based windows malware detection techniques [0.0]
Some researchers use smaller datasets, and if dataset size has a significant impact on performance, that makes comparison of the published results difficult.
The project identified two key objectives, to understand if dataset size correlates to measured detector performance to an extent that prevents meaningful comparison of published results.
Results suggested that high accuracy scores don't necessarily translate to high real-world performance.
arXiv Detail & Related papers (2022-06-13T15:37:31Z) - The Evolution of Out-of-Distribution Robustness Throughout Fine-Tuning [25.85044477227461]
Models that are more accurate on the out-of-distribution data relative to this baseline exhibit "effective robustness"
We find that models pre-trained on larger datasets exhibit effective robustness during training that vanishes at convergence.
We discuss several strategies for scaling effective robustness to the high-accuracy regime to improve the out-of-distribution accuracy of state-of-the-art models.
arXiv Detail & Related papers (2021-06-30T06:21:42Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
influence functions approximate the effect of samples in test-time predictions.
influence estimates are fairly accurate for shallow networks.
Hessian regularization is important to get highquality influence estimates.
arXiv Detail & Related papers (2020-06-25T18:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.