Learn A Flexible Exploration Model for Parameterized Action Markov Decision Processes
- URL: http://arxiv.org/abs/2501.02774v1
- Date: Mon, 06 Jan 2025 05:33:09 GMT
- Title: Learn A Flexible Exploration Model for Parameterized Action Markov Decision Processes
- Authors: Zijian Wang, Bin Wang, Mingwen Shao, Hongbo Dou, Boxiang Tao,
- Abstract summary: We propose a model-based (MBRL) algorithm, FLEXplore, to enhance the learning efficiency and performance of the agent.
We show that FLEXplore has outstanding learning efficiency and performance compared to other baselines.
- Score: 8.588866536242145
- License:
- Abstract: Hybrid action models are widely considered an effective approach to reinforcement learning (RL) modeling. The current mainstream method is to train agents under Parameterized Action Markov Decision Processes (PAMDPs), which performs well in specific environments. Unfortunately, these models either exhibit drastic low learning efficiency in complex PAMDPs or lose crucial information in the conversion between raw space and latent space. To enhance the learning efficiency and asymptotic performance of the agent, we propose a model-based RL (MBRL) algorithm, FLEXplore. FLEXplore learns a parameterized-action-conditioned dynamics model and employs a modified Model Predictive Path Integral control. Unlike conventional MBRL algorithms, we carefully design the dynamics loss function and reward smoothing process to learn a loose yet flexible model. Additionally, we use the variational lower bound to maximize the mutual information between the state and the hybrid action, enhancing the exploration effectiveness of the agent. We theoretically demonstrate that FLEXplore can reduce the regret of the rollout trajectory through the Wasserstein Metric under given Lipschitz conditions. Our empirical results on several standard benchmarks show that FLEXplore has outstanding learning efficiency and asymptotic performance compared to other baselines.
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Feature Alignment-Based Knowledge Distillation for Efficient Compression of Large Language Models [4.737806982257592]
This study proposes a knowledge distillation algorithm based on large language models and feature alignment.
The proposed model performs very close to the state-of-the-art GPT-4 model in terms of evaluation indicators such as perplexity, BLEU, ROUGE, and CER.
arXiv Detail & Related papers (2024-12-27T04:37:06Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Model-based Reinforcement Learning for Parameterized Action Spaces [11.94388805327713]
We propose a novel model-based reinforcement learning algorithm for PAMDPs.
The agent learns a parameterized-action-conditioned dynamics model and plans with a modified Model Predictive Path Integral control.
Our empirical results on several standard benchmarks show that our algorithm achieves superior sample efficiency and performance than state-of-the-art PAMDP methods.
arXiv Detail & Related papers (2024-04-03T19:48:13Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
We show that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system.
We also show that iteratively updating the model is of major importance to avoid biases in the RL training.
arXiv Detail & Related papers (2023-02-14T16:14:39Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Model-Invariant State Abstractions for Model-Based Reinforcement
Learning [54.616645151708994]
We introduce a new type of state abstraction called textitmodel-invariance.
This allows for generalization to novel combinations of unseen values of state variables.
We prove that an optimal policy can be learned over this model-invariance state abstraction.
arXiv Detail & Related papers (2021-02-19T10:37:54Z) - Model-free and Bayesian Ensembling Model-based Deep Reinforcement
Learning for Particle Accelerator Control Demonstrated on the FERMI FEL [0.0]
This paper shows how reinforcement learning can be used on an operational level on accelerator physics problems.
We compare purely model-based to model-free reinforcement learning applied to the intensity optimisation on the FERMI FEL system.
We find that the model-based approach demonstrates higher representational power and sample-efficiency, while the performance of the model-free method is slightly superior.
arXiv Detail & Related papers (2020-12-17T16:57:27Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.