DarkFarseer: Inductive Spatio-temporal Kriging via Hidden Style Enhancement and Sparsity-Noise Mitigation
- URL: http://arxiv.org/abs/2501.02808v1
- Date: Mon, 06 Jan 2025 07:11:34 GMT
- Title: DarkFarseer: Inductive Spatio-temporal Kriging via Hidden Style Enhancement and Sparsity-Noise Mitigation
- Authors: Zhuoxuan Liang, Wei Li, Dalin Zhang, Yidan Chen, Zhihong Wang, Xiangping Zheng, Moustafa Youssef,
- Abstract summary: High costs of building sensor networks limit their scale and coverage, making fine-grained deployment challenging.<n>Inductctive Spatio-Temporal Kriging (ISK) addresses this issue by introducing virtual sensors.<n>We propose DarkFarseer, a novel ISK framework with three key components.
- Score: 9.966211056209119
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid growth of the Internet of Things and Cyber-Physical Systems, widespread sensor deployment has become essential. However, the high costs of building sensor networks limit their scale and coverage, making fine-grained deployment challenging. Inductive Spatio-Temporal Kriging (ISK) addresses this issue by introducing virtual sensors. Based on graph neural networks (GNNs) extracting the relationships between physical and virtual sensors, ISK can infer the measurements of virtual sensors from physical sensors. However, current ISK methods rely on conventional message-passing mechanisms and network architectures, without effectively extracting spatio-temporal features of physical sensors and focusing on representing virtual sensors. Additionally, existing graph construction methods face issues of sparse and noisy connections, destroying ISK performance. To address these issues, we propose DarkFarseer, a novel ISK framework with three key components. First, we propose the Neighbor Hidden Style Enhancement module with a style transfer strategy to enhance the representation of virtual nodes in a temporal-then-spatial manner to better extract the spatial relationships between physical and virtual nodes. Second, we propose Virtual-Component Contrastive Learning, which aims to enrich the node representation by establishing the association between the patterns of virtual nodes and the regional patterns within graph components. Lastly, we design a Similarity-Based Graph Denoising Strategy, which reduces the connectivity strength of noisy connections around virtual nodes and their neighbors based on their temporal information and regional spatial patterns. Extensive experiments demonstrate that DarkFarseer significantly outperforms existing ISK methods.
Related papers
- Inductive Spatio-Temporal Kriging with Physics-Guided Increment Training Strategy for Air Quality Inference [25.08033305174559]
This paper presents a Physics-Guided Increment Training Strategy (PGITS) for estimating air quality at unobserved locations.
By using physics principles as a bridge between virtual and real nodes, this strategy ensures the features of virtual nodes are closer to actual nodes for effective kriging.
arXiv Detail & Related papers (2025-03-12T08:14:46Z) - Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - Graph Neural Networks for Virtual Sensing in Complex Systems: Addressing Heterogeneous Temporal Dynamics [8.715570103753697]
Real-time condition monitoring is crucial for the reliable and efficient operation of complex systems.
We propose a Heterogeneous Temporal Graph Neural Network (HTGNN) framework to address this problem.
HTGNN explicitly models signals from diverse sensors and integrates operating conditions into the model architecture.
arXiv Detail & Related papers (2024-07-26T12:16:53Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
We present a pioneering point cloud compression framework capable of handling both geometry and attribute components.
Our framework utilizes two coordinate-based neural networks to implicitly represent a voxelized point cloud.
Our method exhibits high universality when contrasted with existing learning-based techniques.
arXiv Detail & Related papers (2024-05-19T09:19:40Z) - Physics-Enhanced Graph Neural Networks For Soft Sensing in Industrial Internet of Things [6.374763930914524]
The Industrial Internet of Things (IIoT) is reshaping manufacturing, industrial processes, and infrastructure management.
achieving highly reliable IIoT can be hindered by factors such as the cost of installing large numbers of sensors, limitations in retrofitting existing systems with sensors, or harsh environmental conditions that may make sensor installation impractical.
We propose physics-enhanced Graph Neural Networks (GNNs), which integrate principles of physics into graph-based methodologies.
arXiv Detail & Related papers (2024-04-11T18:03:59Z) - HGFF: A Deep Reinforcement Learning Framework for Lifetime Maximization in Wireless Sensor Networks [5.4894758104028245]
We propose a new framework combining heterogeneous graph neural network with deep reinforcement learning to automatically construct the movement path of the sink.
We design ten types of static and dynamic maps to simulate different wireless sensor networks in the real world.
Our approach consistently outperforms the existing methods on all types of maps.
arXiv Detail & Related papers (2024-04-11T13:09:11Z) - LightGCNet: A Lightweight Geometric Constructive Neural Network for
Data-Driven Soft sensors [19.34621880940066]
Data-driven soft sensors provide a potentially cost-effective and more accurate modeling approach to measure difficult-to-measure indices in industrial processes.
LightGCNet is proposed, which utilizes compact angle constraint to assign the hidden parameters from dynamic intervals.
Two versions algorithmic implementations of LightGCNet are presented in this article.
arXiv Detail & Related papers (2023-12-19T10:18:57Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - NAC-TCN: Temporal Convolutional Networks with Causal Dilated
Neighborhood Attention for Emotion Understanding [60.74434735079253]
We propose a method known as Neighborhood Attention with Convolutions TCN (NAC-TCN)
We accomplish this by introducing a causal version of Dilated Neighborhood Attention while incorporating it with convolutions.
Our model achieves comparable, better, or state-of-the-art performance over TCNs, TCAN, LSTMs, and GRUs while requiring fewer parameters on standard emotion recognition datasets.
arXiv Detail & Related papers (2023-12-12T18:41:30Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - KXNet: A Model-Driven Deep Neural Network for Blind Super-Resolution [57.882146858582175]
We propose a model-driven deep neural network, called KXNet, for blind SISR.
The proposed KXNet is fully integrated with the inherent physical mechanism underlying this SISR task.
Experiments on synthetic and real data finely demonstrate the superior accuracy and generality of our method.
arXiv Detail & Related papers (2022-09-21T12:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.