HGFF: A Deep Reinforcement Learning Framework for Lifetime Maximization in Wireless Sensor Networks
- URL: http://arxiv.org/abs/2407.07747v1
- Date: Thu, 11 Apr 2024 13:09:11 GMT
- Title: HGFF: A Deep Reinforcement Learning Framework for Lifetime Maximization in Wireless Sensor Networks
- Authors: Xiaoxu Han, Xin Mu, Jinghui Zhong,
- Abstract summary: We propose a new framework combining heterogeneous graph neural network with deep reinforcement learning to automatically construct the movement path of the sink.
We design ten types of static and dynamic maps to simulate different wireless sensor networks in the real world.
Our approach consistently outperforms the existing methods on all types of maps.
- Score: 5.4894758104028245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Planning the movement of the sink to maximize the lifetime in wireless sensor networks is an essential problem of great research challenge and practical value. Many existing mobile sink techniques based on mathematical programming or heuristics have demonstrated the feasibility of the task. Nevertheless, the huge computation consumption or the over-reliance on human knowledge can result in relatively low performance. In order to balance the need for high-quality solutions with the goal of minimizing inference time, we propose a new framework combining heterogeneous graph neural network with deep reinforcement learning to automatically construct the movement path of the sink. Modeling the wireless sensor networks as heterogeneous graphs, we utilize the graph neural network to learn representations of sites and sensors by aggregating features of neighbor nodes and extracting hierarchical graph features. Meanwhile, the multi-head attention mechanism is leveraged to allow the sites to attend to information from sensor nodes, which highly improves the expressive capacity of the learning model. Based on the node representations, a greedy policy is learned to append the next best site in the solution incrementally. We design ten types of static and dynamic maps to simulate different wireless sensor networks in the real world, and extensive experiments are conducted to evaluate and analyze our approach. The empirical results show that our approach consistently outperforms the existing methods on all types of maps.
Related papers
- Optimizing Sensor Network Design for Multiple Coverage [0.9668407688201359]
We introduce a new objective function for the greedy (next-best-view) algorithm to design efficient and robust sensor networks.
We also introduce a Deep Learning model to accelerate the algorithm for near real-time computations.
arXiv Detail & Related papers (2024-05-15T05:13:20Z) - Know Thy Neighbors: A Graph Based Approach for Effective Sensor-Based
Human Activity Recognition in Smart Homes [0.0]
We propose a novel graph-guided neural network approach for Human Activity Recognition (HAR) in smart homes.
We accomplish this by learning a more expressive graph structure representing the sensor network in a smart home.
Our approach maps discrete input sensor measurements to a feature space through the application of attention mechanisms.
arXiv Detail & Related papers (2023-11-16T02:43:13Z) - The Map Equation Goes Neural: Mapping Network Flows with Graph Neural Networks [0.716879432974126]
Community detection is an essential tool for unsupervised data exploration and revealing the organisational structure of networked systems.
We consider the map equation, a popular information-theoretic objective function for unsupervised community detection, and express it in differentiable tensor form for gradient through descent.
Our formulation turns the map equation compatible with any neural network architecture, enables end-to-end learning, incorporates node features, and chooses the optimal number of clusters automatically.
arXiv Detail & Related papers (2023-10-02T12:32:18Z) - Graph Neural Network-Based Anomaly Detection for River Network Systems [0.8399688944263843]
Real-time monitoring of water quality is increasingly reliant on in-situ sensor technology.
Anomaly detection is crucial for identifying erroneous patterns in sensor data.
This paper presents a solution to the challenging task of anomaly detection for river network sensor data.
arXiv Detail & Related papers (2023-04-19T01:32:32Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Dynamic Community Detection via Adversarial Temporal Graph
Representation Learning [17.487265170798974]
In this work, an adversarial temporal graph representation learning framework is proposed to detect dynamic communities from a small sample of brain network data.
In addition, the framework employs adversarial training to guide the learning of temporal graph representation and optimize the measurable modularity loss to maximize the modularity of community.
arXiv Detail & Related papers (2022-06-29T08:44:22Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
We show how to explore high-dimensional landscape characteristics of neural networks.
We generalize observations on small neural networks to more complex systems.
An interactive dashboard opens up a number of possible application networks.
arXiv Detail & Related papers (2022-04-09T16:41:53Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
Firefly neural architecture descent is a general framework for progressively and dynamically growing neural networks.
We show that firefly descent can flexibly grow networks both wider and deeper, and can be applied to learn accurate but resource-efficient neural architectures.
In particular, it learns networks that are smaller in size but have higher average accuracy than those learned by the state-of-the-art methods.
arXiv Detail & Related papers (2021-02-17T04:47:18Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.