InpDiffusion: Image Inpainting Localization via Conditional Diffusion Models
- URL: http://arxiv.org/abs/2501.02816v1
- Date: Mon, 06 Jan 2025 07:32:12 GMT
- Title: InpDiffusion: Image Inpainting Localization via Conditional Diffusion Models
- Authors: Kai Wang, Shaozhang Niu, Qixian Hao, Jiwei Zhang,
- Abstract summary: Current IIL methods face two main challenges: a tendency towards overconfidence and difficulty in detecting subtle tampering boundaries.
We propose a new paradigm that treats IIL as a conditional mask generation task utilizing diffusion models.
Our method, InpDiffusion, utilizes the denoising process enhanced by the integration of image semantic conditions to progressively refine predictions.
- Score: 10.213390634031049
- License:
- Abstract: As artificial intelligence advances rapidly, particularly with the advent of GANs and diffusion models, the accuracy of Image Inpainting Localization (IIL) has become increasingly challenging. Current IIL methods face two main challenges: a tendency towards overconfidence, leading to incorrect predictions; and difficulty in detecting subtle tampering boundaries in inpainted images. In response, we propose a new paradigm that treats IIL as a conditional mask generation task utilizing diffusion models. Our method, InpDiffusion, utilizes the denoising process enhanced by the integration of image semantic conditions to progressively refine predictions. During denoising, we employ edge conditions and introduce a novel edge supervision strategy to enhance the model's perception of edge details in inpainted objects. Balancing the diffusion model's stochastic sampling with edge supervision of tampered image regions mitigates the risk of incorrect predictions from overconfidence and prevents the loss of subtle boundaries that can result from overly stochastic processes. Furthermore, we propose an innovative Dual-stream Multi-scale Feature Extractor (DMFE) for extracting multi-scale features, enhancing feature representation by considering both semantic and edge conditions of the inpainted images. Extensive experiments across challenging datasets demonstrate that the InpDiffusion significantly outperforms existing state-of-the-art methods in IIL tasks, while also showcasing excellent generalization capabilities and robustness.
Related papers
- VIPaint: Image Inpainting with Pre-Trained Diffusion Models via Variational Inference [5.852077003870417]
We show that our VIPaint method significantly outperforms previous approaches in both the plausibility and diversity of imputations.
We show that our VIPaint method significantly outperforms previous approaches in both the plausibility and diversity of imputations.
arXiv Detail & Related papers (2024-11-28T05:35:36Z) - Discrete Modeling via Boundary Conditional Diffusion Processes [29.95155303262501]
Previous approaches have suffered from the discrepancy between discrete data and continuous modeling.
We propose a two-step forward process that first estimates the boundary as a prior distribution.
We then rescales the forward trajectory to construct a boundary conditional diffusion model.
arXiv Detail & Related papers (2024-10-29T09:42:42Z) - Data Generation Scheme for Thermal Modality with Edge-Guided Adversarial Conditional Diffusion Model [10.539491614216839]
This paper introduces a novel approach termed the edge guided conditional diffusion model.
It aims to produce meticulously aligned pseudo thermal images at the pixel level,leveraging edge information extracted from visible images.
experiments on LLVIP demonstrate ECDM s superiority over existing state-of-the-art approaches in terms of image generation quality.
arXiv Detail & Related papers (2024-08-07T13:01:10Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
We propose a unified framework Adv-Diffusion that can generate imperceptible adversarial identity perturbations in the latent space but not the raw pixel space.
Specifically, we propose the identity-sensitive conditioned diffusion generative model to generate semantic perturbations in the surroundings.
The designed adaptive strength-based adversarial perturbation algorithm can ensure both attack transferability and stealthiness.
arXiv Detail & Related papers (2023-12-18T15:25:23Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
Recent advanced Text-to-Image (T2I) diffusion models are sometimes too imaginative for existing off-the-shelf dense predictors to estimate.
We introduce DMP, a pipeline utilizing pre-trained T2I models as a prior for dense prediction tasks.
Despite limited-domain training data, the approach yields faithful estimations for arbitrary images, surpassing existing state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-30T18:59:44Z) - Global Structure-Aware Diffusion Process for Low-Light Image Enhancement [64.69154776202694]
This paper studies a diffusion-based framework to address the low-light image enhancement problem.
We advocate for the regularization of its inherent ODE-trajectory.
Experimental evaluations reveal that the proposed framework attains distinguished performance in low-light enhancement.
arXiv Detail & Related papers (2023-10-26T17:01:52Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - How to Trust Your Diffusion Model: A Convex Optimization Approach to
Conformal Risk Control [9.811982443156063]
We focus on image-to-image regression tasks and we present a generalization of the Risk-Controlling Prediction Sets (RCPS) procedure.
Ours relies on a novel convex optimization approach that allows for multidimensional risk control while provably minimizing the mean interval length.
We illustrate our approach on two real-world image denoising problems: on natural images of faces as well as on computed tomography (CT) scans of the abdomen.
arXiv Detail & Related papers (2023-02-07T23:01:16Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
This paper presents a versatile framework for conditional image generation.
It incorporates the inductive bias of CNNs and powerful sequence modeling of auto-regression.
Our method achieves superior diverse image generation performance as compared with the state-of-the-art.
arXiv Detail & Related papers (2022-07-21T22:19:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.