A Simple Combination of Diffusion Models for Better Quality Trade-Offs in Image Denoising
- URL: http://arxiv.org/abs/2503.14654v1
- Date: Tue, 18 Mar 2025 19:02:19 GMT
- Title: A Simple Combination of Diffusion Models for Better Quality Trade-Offs in Image Denoising
- Authors: Jonas Dornbusch, Emanuel Pfarr, Florin-Alexandru Vasluianu, Frank Werner, Radu Timofte,
- Abstract summary: We propose an intuitive method for leveraging pretrained diffusion models.<n>We then introduce our proposed Linear Combination Diffusion Denoiser.<n> LCDD achieves state-of-the-art performance and offers controlled, well-behaved trade-offs.
- Score: 43.44633086975204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have garnered considerable interest in computer vision, owing both to their capacity to synthesize photorealistic images and to their proven effectiveness in image reconstruction tasks. However, existing approaches fail to efficiently balance the high visual quality of diffusion models with the low distortion achieved by previous image reconstruction methods. Specifically, for the fundamental task of additive Gaussian noise removal, we first illustrate an intuitive method for leveraging pretrained diffusion models. Further, we introduce our proposed Linear Combination Diffusion Denoiser (LCDD), which unifies two complementary inference procedures - one that leverages the model's generative potential and another that ensures faithful signal recovery. By exploiting the inherent structure of the denoising samples, LCDD achieves state-of-the-art performance and offers controlled, well-behaved trade-offs through a simple scalar hyperparameter adjustment.
Related papers
- One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.<n>To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.<n>Our method achieves strong performance on both full and no-reference metrics.
arXiv Detail & Related papers (2025-03-09T09:39:57Z) - Frequency-Aware Guidance for Blind Image Restoration via Diffusion Models [20.898262207229873]
Blind image restoration remains a significant challenge in low-level vision tasks.
Guided diffusion models have achieved promising results in blind image restoration.
We propose a novel frequency-aware guidance loss that can be integrated into various diffusion models in a plug-and-play manner.
arXiv Detail & Related papers (2024-11-19T12:18:16Z) - Advancing Diffusion Models: Alias-Free Resampling and Enhanced Rotational Equivariance [0.0]
diffusion models are still challenged by model-induced artifacts and limited stability in image fidelity.
We propose the integration of alias-free resampling layers into the UNet architecture of diffusion models.
Our experimental results on benchmark datasets, including CIFAR-10, MNIST, and MNIST-M, reveal consistent gains in image quality.
arXiv Detail & Related papers (2024-11-14T04:23:28Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
We propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG)
Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal.
It employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality.
arXiv Detail & Related papers (2023-09-19T16:01:20Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Stimulating Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling [56.506240377714754]
We present a novel strategy called the Diffusion Model for Image Denoising (DMID)
Our strategy includes an adaptive embedding method that embeds the noisy image into a pre-trained unconditional diffusion model.
Our DMID strategy achieves state-of-the-art performance on both distortion-based and perception-based metrics.
arXiv Detail & Related papers (2023-07-08T14:59:41Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.