論文の概要: RDD4D: 4D Attention-Guided Road Damage Detection And Classification
- arxiv url: http://arxiv.org/abs/2501.02822v1
- Date: Mon, 06 Jan 2025 07:48:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:08:08.744159
- Title: RDD4D: 4D Attention-Guided Road Damage Detection And Classification
- Title(参考訳): RDD4D:4次元注意誘導道路損傷検出と分類
- Authors: Asma Alkalbani, Muhammad Saqib, Ahmed Salim Alrawahi, Abbas Anwar, Chandarnath Adak, Saeed Anwar,
- Abstract要約: 本稿では,個々の画像から多様な道路被害タイプを抽出する新しい道路被害検出データセットを提案する。
また、Attention4Dブロックを利用したRDD4Dというモデルも提供しています。
- 参考スコア(独自算出の注目度): 15.300130944077704
- License:
- Abstract: Road damage detection and assessment are crucial components of infrastructure maintenance. However, current methods often struggle with detecting multiple types of road damage in a single image, particularly at varying scales. This is due to the lack of road datasets with various damage types having varying scales. To overcome this deficiency, first, we present a novel dataset called Diverse Road Damage Dataset (DRDD) for road damage detection that captures the diverse road damage types in individual images, addressing a crucial gap in existing datasets. Then, we provide our model, RDD4D, that exploits Attention4D blocks, enabling better feature refinement across multiple scales. The Attention4D module processes feature maps through an attention mechanism combining positional encoding and "Talking Head" components to capture local and global contextual information. In our comprehensive experimental analysis comparing various state-of-the-art models on our proposed, our enhanced model demonstrated superior performance in detecting large-sized road cracks with an Average Precision (AP) of 0.458 and maintained competitive performance with an overall AP of 0.445. Moreover, we also provide results on the CrackTinyNet dataset; our model achieved around a 0.21 increase in performance. The code, model weights, dataset, and our results are available on \href{https://github.com/msaqib17/Road_Damage_Detection}{https://github.com/msaqib17/Road\_Damage\_Detection}.
- Abstract(参考訳): 道路損傷の検出と評価は、インフラ整備の重要な要素である。
しかし、現在の方法では、1つの画像、特に様々なスケールで、複数の種類の道路損傷を検出するのに苦労することが多い。
これは、様々な規模を持つ様々な損傷タイプを持つ道路データセットが不足しているためである。
この欠陥を克服するために、まず、道路損傷検出のためのDDR(Diverse Road damage Dataset)と呼ばれる新しいデータセットを提案する。
次に、Attention4Dブロックを利用するRDD4Dというモデルを提供し、複数のスケールで機能改善を可能にします。
Attention4Dモジュールは、位置エンコーディングと"Talking Head"コンポーネントを組み合わせて、ローカルおよびグローバルなコンテキスト情報をキャプチャするアテンション機構を通じて、フィーチャーマップを処理する。
提案した各種技術モデルを比較した総合的な実験分析では, 平均精度0.458で大型道路ひび割れを検知し, 総合性能0.445で競争性能を維持した。
さらに、我々はCrackTinyNetデータセットにも結果を提供しています。
コード、モデルウェイト、データセット、および我々の結果は、 \href{https://github.com/msaqib17/Road_Damage_Detection}{https://github.com/msaqib17/Road\_Damage\_Detection}で確認できる。
関連論文リスト
- Cut-and-Paste with Precision: a Content and Perspective-aware Data Augmentation for Road Damage Detection [5.939858158928473]
道路の損傷は、道路インフラの完全性、安全性、耐久性に重大な課題をもたらす可能性がある。
近年、道路監視アプリケーションにおいて、画像に基づく損傷検出のための様々なデータ駆動手法が研究されている。
本稿では、コンテンツ認識(すなわち、画像中の道路の真の位置を考える)と視点認識(すなわち、注入された損傷と対象画像との視点の差を考慮する)の両面から改善されたカット・アンド・ペースト増強手法を提案する。
論文 参考訳(メタデータ) (2024-06-06T09:06:42Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - CarDD: A New Dataset for Vision-based Car Damage Detection [13.284578516117804]
カー損傷検出(CarDD)は,視覚に基づく車両損傷検出とセグメンテーションのために設計された,最初の大規模データセットである。
我々のCarDDは、4000以上の高解像度の自動車損傷画像と6つの損傷カテゴリの9000以上のよく注釈された事例を含んでいる。
本稿では,画像の収集,選択,アノテーションのプロセスについて詳述し,統計的データセット解析について述べる。
論文 参考訳(メタデータ) (2022-11-02T08:09:03Z) - RDD2022: A multi-national image dataset for automatic Road Damage
Detection [0.0]
このデータセットは、日本、インド、チェコ、ノルウェー、米国、中国6カ国の道路画像47,420枚で構成されている。
本データセットでは, 縦断裂, 横断裂, アリゲータ亀裂, ポットホールの4種類の道路損傷を捉えた。
このデータセットは、クラウドセンシングに基づく道路被害検出チャレンジ(CRDDC2022)の一部としてリリースされた。
論文 参考訳(メタデータ) (2022-09-18T11:29:49Z) - Inertial Hallucinations -- When Wearable Inertial Devices Start Seeing
Things [82.15959827765325]
環境支援型生活(AAL)のためのマルチモーダルセンサフュージョンの新しいアプローチを提案する。
我々は、標準マルチモーダルアプローチの2つの大きな欠点、限られた範囲のカバレッジ、信頼性の低下に対処する。
我々の新しいフレームワークは、三重項学習によるモダリティ幻覚の概念を融合させ、異なるモダリティを持つモデルを訓練し、推論時に欠落したセンサーに対処する。
論文 参考訳(メタデータ) (2022-07-14T10:04:18Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
本稿では,合成データセットの自動生成ツールであるCARLA-GeARについて述べる。
このツールは、Python APIを使用して、CARLAシミュレータ上に構築されており、自律運転のコンテキストにおいて、いくつかのビジョンタスク用のデータセットを生成することができる。
本稿では,CARLA-GeARで生成されたデータセットが,現実世界の敵防衛のベンチマークとして今後どのように利用されるかを示す。
論文 参考訳(メタデータ) (2022-06-09T09:17:38Z) - 3D-VField: Learning to Adversarially Deform Point Clouds for Robust 3D
Object Detection [111.32054128362427]
安全クリティカルな環境では、アウト・オブ・ディストリビューションとロングテールサンプルの堅牢性は、危険な問題を回避するのに不可欠である。
トレーニング中の変形点雲を考慮した3次元物体検出器の領域外データへの一般化を著しく改善する。
我々は、リアルに損傷を受けた稀な車の合成データセットであるCrashDを提案し、共有する。
論文 参考訳(メタデータ) (2021-12-09T08:50:54Z) - Active Learning of Neural Collision Handler for Complex 3D Mesh
Deformations [68.0524382279567]
3次元変形メッシュにおける衝突の検出と処理を行う頑健な学習アルゴリズムを提案する。
提案手法は教師あり学習法より優れ, 精度は93.8-98.1%である。
論文 参考訳(メタデータ) (2021-10-08T04:08:31Z) - Road Damage Detection using Deep Ensemble Learning [36.24563211765782]
道路損傷の効率的な検出と分類のためのアンサンブルモデルを提案する。
我々のソリューションは、You Only Look Once (YOLO-v4)として知られる最先端の物体検出器を利用する。
テスト1データセットでF1スコアが0.628、テスト2データセットで0.6358に達した。
論文 参考訳(メタデータ) (2020-10-30T03:18:14Z) - Unsupervised Pixel-level Road Defect Detection via Adversarial
Image-to-Frequency Transform [8.644679871804872]
本稿では,AIFT(Adversarial Image-to-Frequency Transform)を用いた道路欠陥検出のための教師なし手法を提案する。
AIFTは、欠陥検出モデルの導出において、教師なしの方法と敵対的な学習を採用するため、道路舗装欠陥に対するアノテーションは不要である。
論文 参考訳(メタデータ) (2020-01-30T04:50:00Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) は、あるトピックやクレームに対する著者の姿勢を検出することを目的としている。
マルチデータセット学習環境において、さまざまなドメインの10のStDデータセットから学習するStDベンチマークを導入する。
このベンチマーク設定では、5つのデータセットに新しい最先端結果を表示することができます。
論文 参考訳(メタデータ) (2020-01-06T13:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。