RDD4D: 4D Attention-Guided Road Damage Detection And Classification
- URL: http://arxiv.org/abs/2501.02822v1
- Date: Mon, 06 Jan 2025 07:48:04 GMT
- Title: RDD4D: 4D Attention-Guided Road Damage Detection And Classification
- Authors: Asma Alkalbani, Muhammad Saqib, Ahmed Salim Alrawahi, Abbas Anwar, Chandarnath Adak, Saeed Anwar,
- Abstract summary: We present a novel dataset for road damage detection that captures the diverse road damage types in individual images.
We also provide our model, RDD4D, that exploits Attention4D blocks, enabling better feature refinement across multiple scales.
- Score: 15.300130944077704
- License:
- Abstract: Road damage detection and assessment are crucial components of infrastructure maintenance. However, current methods often struggle with detecting multiple types of road damage in a single image, particularly at varying scales. This is due to the lack of road datasets with various damage types having varying scales. To overcome this deficiency, first, we present a novel dataset called Diverse Road Damage Dataset (DRDD) for road damage detection that captures the diverse road damage types in individual images, addressing a crucial gap in existing datasets. Then, we provide our model, RDD4D, that exploits Attention4D blocks, enabling better feature refinement across multiple scales. The Attention4D module processes feature maps through an attention mechanism combining positional encoding and "Talking Head" components to capture local and global contextual information. In our comprehensive experimental analysis comparing various state-of-the-art models on our proposed, our enhanced model demonstrated superior performance in detecting large-sized road cracks with an Average Precision (AP) of 0.458 and maintained competitive performance with an overall AP of 0.445. Moreover, we also provide results on the CrackTinyNet dataset; our model achieved around a 0.21 increase in performance. The code, model weights, dataset, and our results are available on \href{https://github.com/msaqib17/Road_Damage_Detection}{https://github.com/msaqib17/Road\_Damage\_Detection}.
Related papers
- Cut-and-Paste with Precision: a Content and Perspective-aware Data Augmentation for Road Damage Detection [5.939858158928473]
Road damage can pose significant challenges to the integrity, safety, and durability of road infrastructure.
In recent years, researchers have explored various data-driven methods for image-based damage detection in road monitoring applications.
We propose an improved Cut-and-paste augmentation technique that is both content-aware (i.e. considers the true location of the road in the image) and perspective-aware (i.e. takes into account the difference in perspective between the injected damage and the target image)
arXiv Detail & Related papers (2024-06-06T09:06:42Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - CarDD: A New Dataset for Vision-based Car Damage Detection [13.284578516117804]
We contribute with Car Damage Detection (CarDD), the first public large-scale dataset designed for vision-based car damage detection and segmentation.
Our CarDD contains 4,000 highresolution car damage images with over 9,000 well-annotated instances of six damage categories.
We detail the image collection, selection, and annotation processes, and present a statistical dataset analysis.
arXiv Detail & Related papers (2022-11-02T08:09:03Z) - RDD2022: A multi-national image dataset for automatic Road Damage
Detection [0.0]
The dataset comprises 47,420 road images from six countries, Japan, India, the Czech Republic, Norway, the United States, and China.
Four types of road damage, namely longitudinal cracks, transverse cracks, alligator cracks, and potholes, are captured in the dataset.
The dataset has been released as a part of the Crowd sensing-based Road Damage Detection Challenge (CRDDC2022)
arXiv Detail & Related papers (2022-09-18T11:29:49Z) - Inertial Hallucinations -- When Wearable Inertial Devices Start Seeing
Things [82.15959827765325]
We propose a novel approach to multimodal sensor fusion for Ambient Assisted Living (AAL)
We address two major shortcomings of standard multimodal approaches, limited area coverage and reduced reliability.
Our new framework fuses the concept of modality hallucination with triplet learning to train a model with different modalities to handle missing sensors at inference time.
arXiv Detail & Related papers (2022-07-14T10:04:18Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
This paper presents CARLA-GeAR, a tool for the automatic generation of synthetic datasets for evaluating the robustness of neural models against physical adversarial patches.
The tool is built on the CARLA simulator, using its Python API, and allows the generation of datasets for several vision tasks in the context of autonomous driving.
The paper presents an experimental study to evaluate the performance of some defense methods against such attacks, showing how the datasets generated with CARLA-GeAR might be used in future work as a benchmark for adversarial defense in the real world.
arXiv Detail & Related papers (2022-06-09T09:17:38Z) - 3D-VField: Learning to Adversarially Deform Point Clouds for Robust 3D
Object Detection [111.32054128362427]
In safety-critical settings, robustness on out-of-distribution and long-tail samples is fundamental to circumvent dangerous issues.
We substantially improve the generalization of 3D object detectors to out-of-domain data by taking into account deformed point clouds during training.
We propose and share open source CrashD: a synthetic dataset of realistic damaged and rare cars.
arXiv Detail & Related papers (2021-12-09T08:50:54Z) - Active Learning of Neural Collision Handler for Complex 3D Mesh
Deformations [68.0524382279567]
We present a robust learning algorithm to detect and handle collisions in 3D deforming meshes.
Our approach outperforms supervised learning methods and achieves $93.8-98.1%$ accuracy.
arXiv Detail & Related papers (2021-10-08T04:08:31Z) - Road Damage Detection using Deep Ensemble Learning [36.24563211765782]
We present an ensemble model for efficient detection and classification of road damages.
Our solution utilizes a state-of-the-art object detector known as You Only Look Once (YOLO-v4)
It was able to achieve an F1 score of 0.628 on the test 1 dataset and 0.6358 on the test 2 dataset.
arXiv Detail & Related papers (2020-10-30T03:18:14Z) - Unsupervised Pixel-level Road Defect Detection via Adversarial
Image-to-Frequency Transform [8.644679871804872]
We propose an unsupervised approach to detecting road defects, using Adversarial Image-to-Frequency Transform (AIFT)
AIFT adopts the unsupervised manner and adversarial learning in deriving the defect detection model, so AIFT does not need annotations for road pavement defects.
arXiv Detail & Related papers (2020-01-30T04:50:00Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.