RDD2022: A multi-national image dataset for automatic Road Damage
Detection
- URL: http://arxiv.org/abs/2209.08538v1
- Date: Sun, 18 Sep 2022 11:29:49 GMT
- Title: RDD2022: A multi-national image dataset for automatic Road Damage
Detection
- Authors: Deeksha Arya (1 and 2), Hiroya Maeda (3), Sanjay Kumar Ghosh (1),
Durga Toshniwal (1), Yoshihide Sekimoto (2) ((1) Indian Institute of
Technology Roorkee, India, (2) The University of Tokyo, Japan, (3) UrbanX
Technologies, Inc., Tokyo, Japan)
- Abstract summary: The dataset comprises 47,420 road images from six countries, Japan, India, the Czech Republic, Norway, the United States, and China.
Four types of road damage, namely longitudinal cracks, transverse cracks, alligator cracks, and potholes, are captured in the dataset.
The dataset has been released as a part of the Crowd sensing-based Road Damage Detection Challenge (CRDDC2022)
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The data article describes the Road Damage Dataset, RDD2022, which comprises
47,420 road images from six countries, Japan, India, the Czech Republic,
Norway, the United States, and China. The images have been annotated with more
than 55,000 instances of road damage. Four types of road damage, namely
longitudinal cracks, transverse cracks, alligator cracks, and potholes, are
captured in the dataset. The annotated dataset is envisioned for developing
deep learning-based methods to detect and classify road damage automatically.
The dataset has been released as a part of the Crowd sensing-based Road Damage
Detection Challenge (CRDDC2022). The challenge CRDDC2022 invites researchers
from across the globe to propose solutions for automatic road damage detection
in multiple countries. The municipalities and road agencies may utilize the
RDD2022 dataset, and the models trained using RDD2022 for low-cost automatic
monitoring of road conditions. Further, computer vision and machine learning
researchers may use the dataset to benchmark the performance of different
algorithms for other image-based applications of the same type (classification,
object detection, etc.).
Related papers
- Cut-and-Paste with Precision: a Content and Perspective-aware Data Augmentation for Road Damage Detection [5.939858158928473]
Road damage can pose significant challenges to the integrity, safety, and durability of road infrastructure.
In recent years, researchers have explored various data-driven methods for image-based damage detection in road monitoring applications.
We propose an improved Cut-and-paste augmentation technique that is both content-aware (i.e. considers the true location of the road in the image) and perspective-aware (i.e. takes into account the difference in perspective between the injected damage and the target image)
arXiv Detail & Related papers (2024-06-06T09:06:42Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
Road surface reconstruction helps to enhance the analysis and prediction of vehicle responses for motion planning and control systems.
We introduce the Road Surface Reconstruction dataset, a real-world, high-resolution, and high-precision dataset collected with a specialized platform in diverse driving conditions.
It covers common road types containing approximately 16,000 pairs of stereo images, original point clouds, and ground-truth depth/disparity maps.
arXiv Detail & Related papers (2023-10-03T17:59:32Z) - Road Damages Detection and Classification with YOLOv7 [0.0]
This work proposes to collect and label road damage data using Google Street View and use YOLOv7 (You Only Look Once version 7)
The proposed approaches are applied to the Crowdsensing-based Road Damage Detection Challenge (CRDDC2022), IEEE BigData 2022.
arXiv Detail & Related papers (2022-10-31T18:55:58Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
We introduce a challenging dataset named CODA that exposes this critical problem of vision-based detectors.
The performance of standard object detectors trained on large-scale autonomous driving datasets significantly drops to no more than 12.8% in mAR.
We experiment with the state-of-the-art open-world object detector and find that it also fails to reliably identify the novel objects in CODA.
arXiv Detail & Related papers (2022-03-15T08:32:56Z) - A Computer Vision-assisted Approach to Automated Real-Time Road
Infrastructure Management [0.0]
We propose a supervised object detection approach to detect and classify road distresses in real-time via a vehicle dashboard-mounted smartphone camera.
Our results rank in the top 5 of 121 teams that entered the IEEE's 2020 Global Road Damage Detection ("GRDC") Challenge.
arXiv Detail & Related papers (2022-02-27T04:08:00Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - TJU-DHD: A Diverse High-Resolution Dataset for Object Detection [48.94731638729273]
Large-scale, rich-diversity, and high-resolution datasets play an important role in developing better object detection methods.
We build a diverse high-resolution dataset (called TJU-DHD)
The dataset contains 115,354 high-resolution images and 709,330 labeled objects with a large variance in scale and appearance.
arXiv Detail & Related papers (2020-11-18T09:32:24Z) - Road Damage Detection using Deep Ensemble Learning [36.24563211765782]
We present an ensemble model for efficient detection and classification of road damages.
Our solution utilizes a state-of-the-art object detector known as You Only Look Once (YOLO-v4)
It was able to achieve an F1 score of 0.628 on the test 1 dataset and 0.6358 on the test 2 dataset.
arXiv Detail & Related papers (2020-10-30T03:18:14Z) - Transfer Learning-based Road Damage Detection for Multiple Countries [41.74498230885008]
municipalities and road authorities seek to implement automated evaluation of road damage.
Japan has developed less expensive and readily available Smartphone-based methods for automatic road condition monitoring.
This work assesses the usability of the Japanese model for other countries.
It proposes a large-scale heterogeneous road damage dataset comprising 26620 images collected from multiple countries using smartphones.
arXiv Detail & Related papers (2020-08-30T06:48:00Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
Drone-based vehicle detection aims at finding the vehicle locations and categories in an aerial image.
We construct a large-scale drone-based RGB-Infrared vehicle detection dataset, termed DroneVehicle.
Our DroneVehicle collects 28, 439 RGB-Infrared image pairs, covering urban roads, residential areas, parking lots, and other scenarios from day to night.
arXiv Detail & Related papers (2020-03-05T05:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.