論文の概要: PARF-Net: integrating pixel-wise adaptive receptive fields into hybrid Transformer-CNN network for medical image segmentation
- arxiv url: http://arxiv.org/abs/2501.02882v1
- Date: Mon, 06 Jan 2025 09:48:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:07:03.368270
- Title: PARF-Net: integrating pixel-wise adaptive receptive fields into hybrid Transformer-CNN network for medical image segmentation
- Title(参考訳): PARF-Net:医療画像セグメンテーションのためのハイブリッドトランスフォーマーCNNネットワークへの画素適応型受容場の統合
- Authors: Xu Ma, Mengsheng Chen, Junhui Zhang, Lijuan Song, Fang Du, Zhenhua Yu,
- Abstract要約: 医用画像分割のためのハイブリッドネットワークに,Pixel-wise Adaptive Receptive Fields (Conv-PARF) の畳み込みを統合する新しい手法を開発した。
提案手法は,データセット上のDiceの平均値が84.27%に達し,既存の手法をはるかに上回っている。
- 参考スコア(独自算出の注目度): 5.896243816988129
- License:
- Abstract: Convolutional neural networks (CNNs) excel in local feature extraction while Transformers are superior in processing global semantic information. By leveraging the strengths of both, hybrid Transformer-CNN networks have become the major architectures in medical image segmentation tasks. However, existing hybrid methods still suffer deficient learning of local semantic features due to the fixed receptive fields of convolutions, and also fall short in effectively integrating local and long-range dependencies. To address these issues, we develop a new method PARF-Net to integrate convolutions of Pixel-wise Adaptive Receptive Fields (Conv-PARF) into hybrid Network for medical image segmentation. The Conv-PARF is introduced to cope with inter-pixel semantic differences and dynamically adjust convolutional receptive fields for each pixel, thus providing distinguishable features to disentangle the lesions with varying shapes and scales from the background. The features derived from the Conv-PARF layers are further processed using hybrid Transformer-CNN blocks under a lightweight manner, to effectively capture local and long-range dependencies, thus boosting the segmentation performance. By assessing PARF-Net on four widely used medical image datasets including MoNuSeg, GlaS, DSB2018 and multi-organ Synapse, we showcase the advantages of our method over the state-of-the-arts. For instance, PARF-Net achieves 84.27% mean Dice on the Synapse dataset, surpassing existing methods by a large margin.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は局所的な特徴抽出に優れ、トランスフォーマーはグローバルな意味情報を処理するのに優れている。
両者の強みを生かして、ハイブリッドトランスフォーマー-CNNネットワークは、医療画像セグメンテーションタスクにおける主要なアーキテクチャとなっている。
しかし、既存のハイブリッド手法は、畳み込みの固定された受容領域のために、局所的な意味的特徴の不十分な学習に苦しめられ、また、局所的および長距離的依存関係を効果的に統合するのに不足している。
これらの課題に対処するため,Pixel-wise Adaptive Receptive Fields (Conv-PARF) の畳み込みを医療画像セグメント化のためのハイブリッドネットワークに統合するPARF-Netを開発した。
Conv-PARFは、画素間のセマンティックな差異に対処し、各ピクセルの畳み込み受容野を動的に調整するために導入される。
Conv-PARF層から派生した特徴は、より軽量にハイブリッドなTransformer-CNNブロックを使用してさらに処理され、局所および長距離の依存関係を効果的にキャプチャし、セグメンテーション性能を高める。
PARF-NetをMoNuSeg, GlaS, DSB2018, Multi-organ Synapseの4つの広く使われている医用画像データセット上で評価することにより, 最先端技術に対する当社の手法の利点を示す。
例えば、PARF-Netの84.27%はSynapseデータセット上のDiceであり、既存のメソッドをはるかに上回っている。
関連論文リスト
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
医用画像領域で高解像度画像が好ましいのは、基礎となる方法の診断能力を大幅に向上させるためである。
医用画像セグメンテーションのための既存のディープラーニング技術のほとんどは、空間次元が小さい入力画像に最適化されており、高解像度画像では不十分である。
我々はTransResNetという並列処理アーキテクチャを提案し、TransformerとCNNを並列的に組み合わせ、マルチ解像度画像から特徴を独立して抽出する。
論文 参考訳(メタデータ) (2024-10-01T18:22:34Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
画像融合のための新しい相互誘導動的ネットワーク(MGDN)を提案する。
5つのベンチマークデータセットによる実験結果から,提案手法は4つの画像融合タスクにおいて既存手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-24T03:50:37Z) - ConvFormer: Combining CNN and Transformer for Medical Image Segmentation [17.88894109620463]
医用画像分割のための階層型CNNとTransformerハイブリッドアーキテクチャであるConvFormerを提案する。
ゼロからトレーニングされたConvFormerは、さまざまなCNNやTransformerベースのアーキテクチャより優れ、最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2022-11-15T23:11:22Z) - Optimizing Vision Transformers for Medical Image Segmentation and
Few-Shot Domain Adaptation [11.690799827071606]
我々はCS-Unet(Convolutional Swin-Unet)トランスフォーマーブロックを提案し、パッチ埋め込み、プロジェクション、フィードフォワードネットワーク、サンプリングおよびスキップ接続に関連する設定を最適化する。
CS-Unetはゼロからトレーニングすることができ、各機能プロセスフェーズにおける畳み込みの優位性を継承する。
実験によると、CS-Unetは事前トレーニングなしで、パラメータが少ない2つの医療用CTおよびMRIデータセットに対して、最先端の他のデータセットを大きなマージンで上回っている。
論文 参考訳(メタデータ) (2022-10-14T19:18:52Z) - Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers [5.177947445379688]
畳み込みニューラルネットワークとディープトランスを組み合わせた新しいセグメンテーションモデルを提案する。
提案手法は,最先端技術と比較してセグメント化精度が向上することを示す。
論文 参考訳(メタデータ) (2022-06-20T12:03:54Z) - PHTrans: Parallelly Aggregating Global and Local Representations for
Medical Image Segmentation [7.140322699310487]
我々はPHTransと呼ばれる医用画像分割のための新しいハイブリッドアーキテクチャを提案する。
PHTransはTransformerとCNNを並列にハイブリッド化し、グローバルな特徴とローカルな特徴から階層的な表現を生成する。
論文 参考訳(メタデータ) (2022-03-09T08:06:56Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unetは、医用画像セグメンテーション用のUnetライクなトランスフォーマーである。
トークン化されたイメージパッチは、TransformerベースのU字型デコーダデコーダアーキテクチャに供給される。
論文 参考訳(メタデータ) (2021-05-12T09:30:26Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
畳み込みニューラルネットワーク(CNN)は、現代の3D医療画像セグメンテーションのデファクトスタンダードとなっている。
本稿では,bf畳み込みニューラルネットワークとbfトランスbf(cotr)を効率良く橋渡しし,正確な3次元医用画像分割を実現する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T13:34:22Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
今回提案する新しいtextbfAssociation textbfImplantation(AI)モジュールは、ネットワークがピクセルとその周辺グリッド間の関係を明示的にキャプチャすることを可能にする。
本手法は最先端性能を実現するだけでなく,十分な推論効率を維持することができた。
論文 参考訳(メタデータ) (2021-01-26T10:40:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。