Evolving Generalizable Parallel Algorithm Portfolios via Domain-Agnostic Instance Generation
- URL: http://arxiv.org/abs/2501.02906v3
- Date: Thu, 03 Apr 2025 14:18:35 GMT
- Title: Evolving Generalizable Parallel Algorithm Portfolios via Domain-Agnostic Instance Generation
- Authors: Zhiyuan Wang, Shengcai Liu, Peng Yang, Ke Tang,
- Abstract summary: Generalization is the core objective when trainings from data.<n>Co-evolutionary approaches address this challenge by simultaneously evolving a parallel algorithm portfolio (PAP) and an instance population.<n>This work proposes a general-purpose, off-the-shelf PAP construction approach, named domain-agnostic co-evolution of parameterized search (DACE)
- Score: 27.138566940625385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalization is the core objective when training optimizers from data. However, limited training instances often constrain the generalization capability of the trained optimizers. Co-evolutionary approaches address this challenge by simultaneously evolving a parallel algorithm portfolio (PAP) and an instance population to eventually obtain PAPs with good generalization. Yet, when applied to a specific problem class, these approaches have a major limitation. They require practitioners to provide instance generators specially tailored to the problem class, which is often non-trivial to design. This work proposes a general-purpose, off-the-shelf PAP construction approach, named domain-agnostic co-evolution of parameterized search (DACE), for binary optimization problems where decision variables take values of 0 or 1. The key novelty of DACE lies in its neural network-based domain-agnostic instance representation and generation mechanism that eliminates the need for domain-specific instance generators. The strong generality of DACE is validated across three real-world binary optimization problems: the complementary influence maximization problem (CIMP), the compiler arguments optimization problem (CAOP), and the contamination control problem (CCP). Given only a small set of training instances from these problem classes, DACE, without requiring domain knowledge, constructs PAPs with even better generalization performance than existing approaches on all three classes, despite their use of domain-specific instance generators.
Related papers
- Simultaneous and Meshfree Topology Optimization with Physics-informed Gaussian Processes [0.0]
Topology optimization (TO) provides a principled mathematical approach for optimizing the performance of a structure by designing its material spatial distribution in a pre-defined domain and subject to a set of constraints.
We develop a new class of TO methods based on the framework of Gaussian processes (GPs) whose mean functions are parameterized via deep neural networks.
To test our method against conventional TO approaches implemented in commercial software, we evaluate it on four problems involving the minimization of dissipated power in Stokes flow.
arXiv Detail & Related papers (2024-08-07T01:01:35Z) - Combinatorial Optimization with Policy Adaptation using Latent Space Search [44.12073954093942]
We present a novel approach for designing performant algorithms to solve complex, typically NP-hard, problems.
We show that our search strategy outperforms state-of-the-art approaches on 11 standard benchmarking tasks.
arXiv Detail & Related papers (2023-11-13T12:24:54Z) - Domain-Expanded ASTE: Rethinking Generalization in Aspect Sentiment Triplet Extraction [67.54420015049732]
Aspect Sentiment Triplet Extraction (ASTE) is a challenging task in sentiment analysis, aiming to provide fine-grained insights into human sentiments.
Existing benchmarks are limited to two domains and do not evaluate model performance on unseen domains.
We introduce a domain-expanded benchmark by annotating samples from diverse domains, enabling evaluation of models in both in-domain and out-of-domain settings.
arXiv Detail & Related papers (2023-05-23T18:01:49Z) - Generalized Few-Shot Continual Learning with Contrastive Mixture of
Adapters [59.82088750033897]
We set up a Generalized FSCL (GFSCL) protocol involving both class- and domain-incremental situations.
We find that common continual learning methods have poor generalization ability on unseen domains.
In this way, we propose a rehearsal-free framework based on Vision Transformer (ViT) named Contrastive Mixture of Adapters (CMoA)
arXiv Detail & Related papers (2023-02-12T15:18:14Z) - Localized Adversarial Domain Generalization [83.4195658745378]
Adversarial domain generalization is a popular approach to domain generalization.
We propose localized adversarial domain generalization with space compactness maintenance(LADG)
We conduct comprehensive experiments on the Wilds DG benchmark to validate our approach.
arXiv Detail & Related papers (2022-05-09T08:30:31Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
Various algorithms for reinforcement learning (RL) exhibit dramatic variation in their convergence rates as a function of problem structure.
This research provides guarantees that explain textitex post the performance differences observed.
A natural next step is to convert these theoretical guarantees into guidelines that are useful in practice.
arXiv Detail & Related papers (2022-01-21T04:25:35Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Model-Based Domain Generalization [96.84818110323518]
We propose a novel approach for the domain generalization problem called Model-Based Domain Generalization.
Our algorithms beat the current state-of-the-art methods on the very-recently-proposed WILDS benchmark by up to 20 percentage points.
arXiv Detail & Related papers (2021-02-23T00:59:02Z) - Causal Policy Gradients [6.123324869194195]
Causal policy gradients (CPGs) provide a common framework for analysing key state-of-the-art algorithms.
CPGs are shown to generalise traditional policy gradients, and yield a principled way of incorporating prior knowledge of a problem domain's generative processes.
arXiv Detail & Related papers (2021-02-20T14:51:12Z) - Population-Based Methods: PARTICLE SWARM OPTIMIZATION -- Development of
a General-Purpose Optimizer and Applications [0.0]
This thesis is concerned with continuous, static, and single-objective optimization problems subject to inequality constraints.
The particle swarm optimization paradigm was inspired by previous simulations of the cooperative behaviour observed in social beings.
arXiv Detail & Related papers (2021-01-25T09:36:25Z) - Cross-Domain Structure Preserving Projection for Heterogeneous Domain
Adaptation [23.18781318003242]
Heterogeneous Domain Adaptation (HDA) addresses the transfer learning problems where data from source and target domains are of different modalities.
Traditional domain adaptation algorithms assume that the representations of source and target samples reside in the same feature space.
We propose a novel Cross-Domain Structure Preserving Projection (CDSPP) algorithm for HDA.
arXiv Detail & Related papers (2020-04-26T16:22:28Z) - Polynomial-Time Exact MAP Inference on Discrete Models with Global
Dependencies [83.05591911173332]
junction tree algorithm is the most general solution for exact MAP inference with run-time guarantees.
We propose a new graph transformation technique via node cloning which ensures a run-time for solving our target problem independently of the form of a corresponding clique tree.
arXiv Detail & Related papers (2019-12-27T13:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.