論文の概要: Pointmap-Conditioned Diffusion for Consistent Novel View Synthesis
- arxiv url: http://arxiv.org/abs/2501.02913v1
- Date: Mon, 06 Jan 2025 10:48:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:07:01.523209
- Title: Pointmap-Conditioned Diffusion for Consistent Novel View Synthesis
- Title(参考訳): 特異な新しい視点合成のための点マップ整合拡散
- Authors: Thang-Anh-Quan Nguyen, Nathan Piasco, Luis Roldão, Moussab Bennehar, Dzmitry Tsishkou, Laurent Caraffa, Jean-Philippe Tarel, Roland Brémond,
- Abstract要約: 単一画像の新規ビュー合成のための新しいフレームワークであるPointmapDiffusionを提案する。
本手法は,参照画像に先立って点マップを条件付き信号として利用し,拡散過程を導出する手法である。
多様な実世界のデータセットの実験により、PointmapDiffusionは高品質でマルチビューの一貫性のある結果が得られることを示した。
- 参考スコア(独自算出の注目度): 2.612019169899311
- License:
- Abstract: In this paper, we present PointmapDiffusion, a novel framework for single-image novel view synthesis (NVS) that utilizes pre-trained 2D diffusion models. Our method is the first to leverage pointmaps (i.e. rasterized 3D scene coordinates) as a conditioning signal, capturing geometric prior from the reference images to guide the diffusion process. By embedding reference attention blocks and a ControlNet for pointmap features, our model balances between generative capability and geometric consistency, enabling accurate view synthesis across varying viewpoints. Extensive experiments on diverse real-world datasets demonstrate that PointmapDiffusion achieves high-quality, multi-view consistent results with significantly fewer trainable parameters compared to other baselines for single-image NVS tasks.
- Abstract(参考訳): 本稿では,事前学習した2次元拡散モデルを用いた単一画像新規ビュー合成(NVS)のための新しいフレームワークであるPointmapDiffusionを提案する。
本手法は,参照画像から幾何学的事前を抽出して拡散過程を導出する条件付け信号として,最初にポイントマップ(ラスタライズド3Dシーン座標)を利用する手法である。
参照アテンションブロックとポイントマップ機能のためのコントロールネットを埋め込むことで、モデルが生成能力と幾何学的一貫性のバランスを保ち、様々な視点で正確なビュー合成を可能にします。
多様な実世界のデータセットに対する大規模な実験により、PointmapDiffusionは、シングルイメージのNVSタスクの他のベースラインに比べて、トレーニング可能なパラメータをはるかに少なく、高品質で複数ビューの一貫性のある結果が得られることを示した。
関連論文リスト
- MultiDiff: Consistent Novel View Synthesis from a Single Image [60.04215655745264]
MultiDiffは、単一のRGB画像からシーンを一貫した新しいビュー合成のための新しいアプローチである。
以上の結果から,MultiDiffは,課題の多いリアルタイムデータセットであるRealEstate10KとScanNetにおいて,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-06-26T17:53:51Z) - Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3Dは、単一視点画像から高忠実なテクスチャメッシュを効率的に生成する新しい手法である。
画像から3Dまでのタスクの品質,一貫性,効率性を総括的に改善するため,領域間拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-10-23T15:02:23Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
スパースビュー入力に適した新しい3D再構成手法であるスパース3Dを提案する。
提案手法は,多視点拡散モデルから頑健な先行情報を抽出し,ニューラルラディアンス場を改良する。
強力な画像拡散モデルから2Dプリエントをタップすることで、我々の統合モデルは、常に高品質な結果をもたらす。
論文 参考訳(メタデータ) (2023-08-27T11:52:00Z) - Towards Scalable Multi-View Reconstruction of Geometry and Materials [27.660389147094715]
本稿では,3次元シーンのカメラポーズ,オブジェクト形状,空間変化の両方向反射分布関数(svBRDF)のジョイントリカバリ手法を提案する。
入力は高解像度のRGBD画像であり、アクティブ照明用の点灯付き携帯型ハンドヘルドキャプチャシステムによってキャプチャされる。
論文 参考訳(メタデータ) (2023-06-06T15:07:39Z) - Explicit Correspondence Matching for Generalizable Neural Radiance
Fields [49.49773108695526]
本稿では,新たな未知のシナリオに一般化し,2つのソースビューで新規なビュー合成を行う新しいNeRF手法を提案する。
明瞭な対応マッチングは、異なるビュー上の3Dポイントの2次元投影でサンプリングされた画像特徴間のコサイン類似度と定量化される。
実験では,実験結果から得られたコサイン特徴の類似性と体積密度との間に強い相関関係が認められた。
論文 参考訳(メタデータ) (2023-04-24T17:46:01Z) - Learning to Render Novel Views from Wide-Baseline Stereo Pairs [26.528667940013598]
本稿では,単一の広線ステレオ画像ペアのみを付与した新しいビュー合成手法を提案する。
スパース観測による新しいビュー合成への既存のアプローチは、誤った3次元形状の復元によって失敗する。
対象光線に対する画像特徴を組み立てるための,効率的な画像空間のエピポーラ線サンプリング手法を提案する。
論文 参考訳(メタデータ) (2023-04-17T17:40:52Z) - Novel View Synthesis with Diffusion Models [56.55571338854636]
本稿では,3Dノベルビュー合成のための拡散モデルである3DiMを提案する。
単一のインプットビューを多くのビューで一貫したシャープな補完に変換することができる。
3DiMは、条件付けと呼ばれる新しい技術を使って、3D一貫性のある複数のビューを生成することができる。
論文 参考訳(メタデータ) (2022-10-06T16:59:56Z) - Leveraging Monocular Disparity Estimation for Single-View Reconstruction [8.583436410810203]
単分子深度推定の進歩を利用して不均一マップを得る。
我々は,2次元の正規化不均質マップを,関連するカメラパラメータの最適化によって3次元の点群に変換する。
論文 参考訳(メタデータ) (2022-07-01T03:05:40Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
多視点画像観測による材料と照明の協調最適化手法を提案する。
従来のグラフィックスエンジンにデプロイ可能な,空間的に変化する材料と環境を備えたメッシュを活用します。
論文 参考訳(メタデータ) (2021-11-24T13:58:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。