Key-value memory in the brain
- URL: http://arxiv.org/abs/2501.02950v1
- Date: Mon, 06 Jan 2025 11:46:40 GMT
- Title: Key-value memory in the brain
- Authors: Samuel J. Gershman, Ila Fiete, Kazuki Irie,
- Abstract summary: Key-value memory systems distinguish representations used for storage (values) and those used for retrieval (keys)
This allows key-value memory systems to optimize simultaneously for fidelity in storage and discriminability in retrieval.
We review the computational foundations of key-value memory, its role in modern machine learning systems, related ideas from psychology and neuroscience, applications to a number of empirical puzzles, and possible biological implementations.
- Score: 19.319373145044015
- License:
- Abstract: Classical models of memory in psychology and neuroscience rely on similarity-based retrieval of stored patterns, where similarity is a function of retrieval cues and the stored patterns. While parsimonious, these models do not allow distinct representations for storage and retrieval, despite their distinct computational demands. Key-value memory systems, in contrast, distinguish representations used for storage (values) and those used for retrieval (keys). This allows key-value memory systems to optimize simultaneously for fidelity in storage and discriminability in retrieval. We review the computational foundations of key-value memory, its role in modern machine learning systems, related ideas from psychology and neuroscience, applications to a number of empirical puzzles, and possible biological implementations.
Related papers
- What do larger image classifiers memorise? [64.01325988398838]
We show that training examples exhibit an unexpectedly diverse set of memorisation trajectories across model sizes.
We find that knowledge distillation, an effective and popular model compression technique, tends to inhibit memorisation, while also improving generalisation.
arXiv Detail & Related papers (2023-10-09T01:52:07Z) - Sequential Memory with Temporal Predictive Coding [6.228559238589584]
We propose a PC-based model for emphsequential memory, called emphtemporal predictive coding (tPC)
We show that our tPC models can memorize and retrieve sequential inputs accurately with a biologically plausible neural implementation.
arXiv Detail & Related papers (2023-05-19T20:03:31Z) - Measures of Information Reflect Memorization Patterns [53.71420125627608]
We show that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization.
Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabelled in-distribution examples.
arXiv Detail & Related papers (2022-10-17T20:15:24Z) - On the Relationship Between Variational Inference and Auto-Associative
Memory [68.8204255655161]
We study how different neural network approaches to variational inference can be applied in this framework.
We evaluate the obtained algorithms on the CIFAR10 and CLEVR image datasets and compare them with other associative memory models.
arXiv Detail & Related papers (2022-10-14T14:18:47Z) - Classification and Generation of real-world data with an Associative
Memory Model [0.0]
We extend the capabilities of the basic Associative Memory Model by using a Multiple-Modality framework.
By storing both the images and labels as modalities, a single Memory can be used to retrieve and complete patterns.
arXiv Detail & Related papers (2022-07-11T12:51:27Z) - Pin the Memory: Learning to Generalize Semantic Segmentation [68.367763672095]
We present a novel memory-guided domain generalization method for semantic segmentation based on meta-learning framework.
Our method abstracts the conceptual knowledge of semantic classes into categorical memory which is constant beyond the domains.
arXiv Detail & Related papers (2022-04-07T17:34:01Z) - Entropic Associative Memory for Manuscript Symbols [0.0]
Manuscript symbols can be stored, recognized and retrieved from an entropic digital memory that is associative and distributed but yet declarative.
We discuss the operational characteristics of the entropic associative memory for retrieving objects with both complete and incomplete information.
arXiv Detail & Related papers (2022-02-17T02:29:33Z) - Biological learning in key-value memory networks [0.45880283710344055]
Memory-augmented neural networks in machine learning commonly use a key-value mechanism to store and read out memories in a single step.
We propose an implementation of basic key-value memory that stores inputs using a combination of biologically plausible three-factor plasticity rules.
Our results suggest a compelling alternative to the classical Hopfield network as a model of biological long-term memory.
arXiv Detail & Related papers (2021-10-26T19:26:53Z) - Associative Memories via Predictive Coding [37.59398215921529]
Associative memories in the brain receive and store patterns of activity registered by the sensory neurons.
We present a novel neural model for realizing associative memories based on a hierarchical generative network that receives external stimuli via sensory neurons.
arXiv Detail & Related papers (2021-09-16T15:46:26Z) - Kanerva++: extending The Kanerva Machine with differentiable, locally
block allocated latent memory [75.65949969000596]
Episodic and semantic memory are critical components of the human memory model.
We develop a new principled Bayesian memory allocation scheme that bridges the gap between episodic and semantic memory.
We demonstrate that this allocation scheme improves performance in memory conditional image generation.
arXiv Detail & Related papers (2021-02-20T18:40:40Z) - Self-Attentive Associative Memory [69.40038844695917]
We propose to separate the storage of individual experiences (item memory) and their occurring relationships (relational memory)
We achieve competitive results with our proposed two-memory model in a diversity of machine learning tasks.
arXiv Detail & Related papers (2020-02-10T03:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.