論文の概要: MotionBench: Benchmarking and Improving Fine-grained Video Motion Understanding for Vision Language Models
- arxiv url: http://arxiv.org/abs/2501.02955v1
- Date: Mon, 06 Jan 2025 11:57:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:07:00.402606
- Title: MotionBench: Benchmarking and Improving Fine-grained Video Motion Understanding for Vision Language Models
- Title(参考訳): MotionBench:ビジョン言語モデルのためのきめ細かいビデオモーション理解のベンチマークと改善
- Authors: Wenyi Hong, Yean Cheng, Zhuoyi Yang, Weihan Wang, Lefan Wang, Xiaotao Gu, Shiyu Huang, Yuxiao Dong, Jie Tang,
- Abstract要約: MotionBenchは、ビデオ理解モデルの詳細な動作理解を評価するために設計された評価ベンチマークである。
さまざまなソースから収集されたデータが含まれており、現実世界のビデオコンテンツの広範な表現が保証されている。
我々のベンチマークは、より有能な映像理解モデルの開発をガイドし、動機づけることを目的としている。
- 参考スコア(独自算出の注目度): 30.139277087078764
- License:
- Abstract: In recent years, vision language models (VLMs) have made significant advancements in video understanding. However, a crucial capability - fine-grained motion comprehension - remains under-explored in current benchmarks. To address this gap, we propose MotionBench, a comprehensive evaluation benchmark designed to assess the fine-grained motion comprehension of video understanding models. MotionBench evaluates models' motion-level perception through six primary categories of motion-oriented question types and includes data collected from diverse sources, ensuring a broad representation of real-world video content. Experimental results reveal that existing VLMs perform poorly in understanding fine-grained motions. To enhance VLM's ability to perceive fine-grained motion within a limited sequence length of LLM, we conduct extensive experiments reviewing VLM architectures optimized for video feature compression and propose a novel and efficient Through-Encoder (TE) Fusion method. Experiments show that higher frame rate inputs and TE Fusion yield improvements in motion understanding, yet there is still substantial room for enhancement. Our benchmark aims to guide and motivate the development of more capable video understanding models, emphasizing the importance of fine-grained motion comprehension. Project page: https://motion-bench.github.io .
- Abstract(参考訳): 近年,視覚言語モデル (VLM) は映像理解において大きな進歩を遂げている。
しかし、重要な機能、微粒な動きの理解は、現在のベンチマークでは未調査のままである。
このギャップに対処するため,ビデオ理解モデルの微粒化動作理解を評価するための総合評価ベンチマークであるMotionBenchを提案する。
MotionBenchは、モーション指向質問型の6つの主要なカテゴリを通じて、モデルのモーションレベルの知覚を評価し、さまざまなソースから収集されたデータを含み、現実世界のビデオコンテンツの広範な表現を保証する。
実験結果から,既存のVLMでは微粒な動きの理解が不十分であることが判明した。
本研究では,ビデオ特徴量圧縮に最適化されたVLMアーキテクチャを広範囲に検証し,高速かつ高効率なスルーエンコーダ(TE)フュージョン法を提案する。
実験により、高いフレームレートの入力とTE Fusionによる動作理解の改善が示されているが、それでもかなりの拡張の余地がある。
本ベンチマークは,より能力の高い映像理解モデルの開発をガイドし,モチベーションを高めることを目的としており,微粒な動き理解の重要性を強調している。
プロジェクトページ: https://motion-bench.github.io 。
関連論文リスト
- VideoJAM: Joint Appearance-Motion Representations for Enhanced Motion Generation in Video Models [71.9811050853964]
VideoJAMは、ビデオジェネレータの前に効果的な動きを注入する新しいフレームワークである。
VideoJAMは動きコヒーレンスにおける最先端のパフォーマンスを達成する。
これらの知見は、外観と動きが相補的であり、効果的に統合されると、映像生成の視覚的品質とコヒーレンスの両方を高めることを強調した。
論文 参考訳(メタデータ) (2025-02-04T17:07:10Z) - InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling [56.130911402831906]
本稿では,LRC(Long and rich context)モデリングによるビデオ大言語モデル(LM)の性能向上を目的とする。
InternVideo2.5の新バージョンを開発し、ビデオの細かい詳細を知覚するオリジナルのMLLMの能力の向上に焦点をあてる。
実験により、このユニークな設計ML LRCは、主流理解ベンチマークにおけるビデオMLLMの結果を大幅に改善することを示した。
論文 参考訳(メタデータ) (2025-01-21T18:59:00Z) - MotionStone: Decoupled Motion Intensity Modulation with Diffusion Transformer for Image-to-Video Generation [55.238542326124545]
静止画像に画像間(I2V)生成を条件付け、動き強度を付加的な制御信号として最近強化した。
これらの動き認識モデルは多様な動きパターンを生成するために魅力的だが、そのようなモデルを野生の大規模ビデオでトレーニングするための信頼性の高い動き推定器は存在しない。
本稿では,映像中の物体とカメラのデカップリング運動強度を計測できる新しい動き推定器の課題に対処する。
論文 参考訳(メタデータ) (2024-12-08T08:12:37Z) - Motion-Grounded Video Reasoning: Understanding and Perceiving Motion at Pixel Level [63.18855743293851]
Motion-Grounded Video Reasoningは、入力された質問に応じて視覚的回答(ビデオセグメンテーションマスク)を必要とする新しい動作理解タスクである。
このタスクは、質問による暗黙の推論を可能にすることで、明示的なアクション/モーショングラウンドの既存の基盤作業を、より一般的なフォーマットに拡張する。
我々はMotion-Grounded Video Reasoning Assistant(MORA)という新しいベースラインモデルを導入する。
論文 参考訳(メタデータ) (2024-11-15T03:45:09Z) - MotionBank: A Large-scale Video Motion Benchmark with Disentangled Rule-based Annotations [85.85596165472663]
我々は、13の動画アクションデータセット、1.24Mのモーションシーケンス、132.9Mの自然な、多様な人間のモーションフレームからなるMotionBankを構築した。
私たちのMotionBankは、人間のモーション生成、モーションインコンテキスト生成、そしてモーション理解といった、一般的なモーション関連タスクに役立ちます。
論文 参考訳(メタデータ) (2024-10-17T17:31:24Z) - MotionLLM: Understanding Human Behaviors from Human Motions and Videos [40.132643319573205]
この研究は、人間の行動理解の多様性(ビデオと運動のモダリティ)の領域を掘り下げる。
我々は、人間の動作理解、キャプション、推論のためのフレームワークであるMotionLLMを紹介する。
論文 参考訳(メタデータ) (2024-05-30T17:59:50Z) - Video Diffusion Models are Training-free Motion Interpreter and Controller [20.361790608772157]
本稿では,映像拡散モデルにおける動き認識機能を理解し,ローカライズし,操作するための新しい視点を提案する。
コンテンツ相関情報とフィルタリング動作チャネルを除去し,MOFT(Motion FeaTure)を提案する。
論文 参考訳(メタデータ) (2024-05-23T17:59:40Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
スペクトル運動アライメント(英: Spectral Motion Alignment、SMA)は、フーリエ変換とウェーブレット変換を用いて運動ベクトルを洗練・整列するフレームワークである。
SMAは周波数領域の正規化を取り入れて動きパターンを学習し、全体フレームのグローバルな動きのダイナミクスの学習を容易にする。
大規模な実験は、様々なビデオカスタマイズフレームワーク間の計算効率と互換性を維持しながら、モーション転送を改善するSMAの有効性を示す。
論文 参考訳(メタデータ) (2024-03-22T14:47:18Z) - Learning Variational Motion Prior for Video-based Motion Capture [31.79649766268877]
ビデオに基づくモーションキャプチャーのための新しい変分動作先行学習手法(VMP)を提案する。
我々のフレームワークはフレームワイドポーズ推定における時間的ジッタリングと障害モードを効果的に削減できる。
公開データセットとインザワイルドビデオの両方を用いた実験により、我々のフレームワークの有効性と一般化能力が実証された。
論文 参考訳(メタデータ) (2022-10-27T02:45:48Z) - MotionSqueeze: Neural Motion Feature Learning for Video Understanding [46.82376603090792]
モーションはビデオを理解する上で重要な役割を担い、ビデオ分類のための最先端のニューラルモデルにはモーション情報が含まれる。
本研究では,光学流の外部および重い計算を内部および軽量な運動特徴学習に置き換える。
提案手法は,アクション認識のための4つの標準ベンチマークにおいて,少ない追加コストで大幅に向上できることを実証する。
論文 参考訳(メタデータ) (2020-07-20T08:30:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。