Trust Modeling in Counseling Conversations: A Benchmark Study
- URL: http://arxiv.org/abs/2501.03064v1
- Date: Mon, 06 Jan 2025 15:02:30 GMT
- Title: Trust Modeling in Counseling Conversations: A Benchmark Study
- Authors: Aseem Srivastava, Zuhair Hasan Shaik, Tanmoy Chakraborty, Md Shad Akhtar,
- Abstract summary: The therapeutic bond between a patient and a therapist directly facilitates effective mental health counseling.
Our definition of trust involves patients' willingness and openness to express themselves.
Our study aims unfold how trust evolves in therapeutic interactions.
- Score: 30.22979233242685
- License:
- Abstract: In mental health counseling, a variety of earlier studies have focused on dialogue modeling. However, most of these studies give limited to no emphasis on the quality of interaction between a patient and a therapist. The therapeutic bond between a patient and a therapist directly correlates with effective mental health counseling. It involves developing the patient's trust on the therapist over the course of counseling. To assess the therapeutic bond in counseling, we introduce trust as a therapist-assistive metric. Our definition of trust involves patients' willingness and openness to express themselves and, consequently, receive better care. We conceptualize it as a dynamic trajectory observable through textual interactions during the counseling. To facilitate trust modeling, we present MENTAL-TRUST, a novel counseling dataset comprising manual annotation of 212 counseling sessions with first-of-its-kind seven expert-verified ordinal trust levels. We project our problem statement as an ordinal classification task for trust quantification and propose a new benchmark, TrustBench, comprising a suite of classical and state-of-the-art language models on MENTAL-TRUST. We evaluate the performance across a suite of metrics and lay out an exhaustive set of findings. Our study aims to unfold how trust evolves in therapeutic interactions.
Related papers
- CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
We propose a new benchmark, CBT-BENCH, for the systematic evaluation of cognitive behavioral therapy (CBT) assistance.
We include three levels of tasks in CBT-BENCH: I: Basic CBT knowledge acquisition, with the task of multiple-choice questions; II: Cognitive model understanding, with the tasks of cognitive distortion classification, primary core belief classification, and fine-grained core belief classification; III: Therapeutic response generation, with the task of generating responses to patient speech in CBT therapy sessions.
Experimental results indicate that while LLMs perform well in reciting CBT knowledge, they fall short in complex real-world scenarios
arXiv Detail & Related papers (2024-10-17T04:52:57Z) - Taking a turn for the better: Conversation redirection throughout the course of mental-health therapy [9.654703213945467]
We introduce a measure of the extent to which a certain utterance immediately redirects the flow of the conversation.
We apply this new measure to characterize the development of patient-therapist relationships over multiple sessions in an online therapy platform.
Our analysis reveals that patient control of the conversation's direction generally increases relative to that of the therapist as their relationship progresses.
arXiv Detail & Related papers (2024-10-09T17:54:41Z) - Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT [6.812247730094931]
We investigate the potential and limitations of using large language models (LLMs) as providers of evidence-based therapy.
We replicated publicly accessible mental health conversations rooted in Cognitive Behavioral Therapy (CBT) to compare session dynamics and counselor's CBT-based behaviors.
Our findings show that the peer sessions are characterized by empathy, small talk, therapeutic alliance, and shared experiences but often exhibit therapist drift.
arXiv Detail & Related papers (2024-09-03T19:19:13Z) - Cactus: Towards Psychological Counseling Conversations using Cognitive Behavioral Theory [24.937025825501998]
We create a multi-turn dialogue dataset that emulates real-life interactions using the goal-oriented and structured approach of Cognitive Behavioral Therapy (CBT)
We benchmark against established psychological criteria used to evaluate real counseling sessions, ensuring alignment with expert evaluations.
Experimental results demonstrate that Camel, a model trained with Cactus, outperforms other models in counseling skills, highlighting its effectiveness and potential as a counseling agent.
arXiv Detail & Related papers (2024-07-03T13:41:31Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - COMPASS: Computational Mapping of Patient-Therapist Alliance Strategies with Language Modeling [14.04866656172336]
We present a novel framework to infer the therapeutic working alliance from the natural language used in psychotherapy sessions.
Our approach utilizes advanced large language models (LLMs) to analyze transcripts of psychotherapy sessions and compare them with distributed representations of statements in the working alliance inventory.
arXiv Detail & Related papers (2024-02-22T16:56:44Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - Understanding the Therapeutic Relationship between Counselors and Clients in Online Text-based Counseling using LLMs [18.605352662843575]
We present an automatic approach using large language models (LLMs) to understand the development of therapeutic alliance in text-based counseling.
We collect a comprehensive counseling dataset and conduct multiple expert evaluations on a subset based on this framework.
Our findings underscore the challenges counselors face in cultivating strong online relationships with clients.
arXiv Detail & Related papers (2024-02-19T09:00:10Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z) - Opportunities of a Machine Learning-based Decision Support System for
Stroke Rehabilitation Assessment [64.52563354823711]
Rehabilitation assessment is critical to determine an adequate intervention for a patient.
Current practices of assessment mainly rely on therapist's experience, and assessment is infrequently executed due to the limited availability of a therapist.
We developed an intelligent decision support system that can identify salient features of assessment using reinforcement learning.
arXiv Detail & Related papers (2020-02-27T17:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.