論文の概要: Co-Activation Graph Analysis of Safety-Verified and Explainable Deep Reinforcement Learning Policies
- arxiv url: http://arxiv.org/abs/2501.03142v1
- Date: Mon, 06 Jan 2025 17:07:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:08:36.517701
- Title: Co-Activation Graph Analysis of Safety-Verified and Explainable Deep Reinforcement Learning Policies
- Title(参考訳): 安全確認・説明可能な深部強化学習政策のコアクティベーショングラフ解析
- Authors: Dennis Gross, Helge Spieker,
- Abstract要約: 深層強化学習(RL)ポリシーは、安全でない振る舞いを示し、解釈するのが困難である。
我々は、RLポリシーモデルチェックとコアクティベーショングラフ分析を組み合わせる。
この組み合わせにより、安全な意思決定のために、RLポリシーの内部動作を解釈することができます。
- 参考スコア(独自算出の注目度): 5.923818043882103
- License:
- Abstract: Deep reinforcement learning (RL) policies can demonstrate unsafe behaviors and are challenging to interpret. To address these challenges, we combine RL policy model checking--a technique for determining whether RL policies exhibit unsafe behaviors--with co-activation graph analysis--a method that maps neural network inner workings by analyzing neuron activation patterns--to gain insight into the safe RL policy's sequential decision-making. This combination lets us interpret the RL policy's inner workings for safe decision-making. We demonstrate its applicability in various experiments.
- Abstract(参考訳): 深層強化学習(RL)ポリシーは、安全でない振る舞いを示し、解釈するのが困難である。
これらの課題に対処するために、我々はRLポリシーモデルチェック(RLポリシーが安全でない行動を示すかどうかを決定する技術)とコアクティベーショングラフ分析(コアクティベーショングラフ分析)を組み合わせる。
この組み合わせにより、安全な意思決定のために、RLポリシーの内部動作を解釈することができます。
様々な実験で適用可能性を示す。
関連論文リスト
- Safety-Oriented Pruning and Interpretation of Reinforcement Learning Policies [5.923818043882103]
Pruning Neural Network(NN)はそれらを合理化するが、安全な強化学習(RL)ポリシから重要なパラメータを取り除くリスクがある。
本稿では,NNプルーニングとモデルチェックを併用して,解釈可能なRL安全性を確保する,VERINTERと呼ばれる解釈可能なRL手法を提案する。
論文 参考訳(メタデータ) (2024-09-16T12:13:41Z) - Distilling Reinforcement Learning Policies for Interpretable Robot Locomotion: Gradient Boosting Machines and Symbolic Regression [53.33734159983431]
本稿では, ニューラルRLポリシをより解釈可能な形式に蒸留する新しい手法を提案する。
我々は、RLを用いて専門家のニューラルネットワークポリシーを訓練し、(i)GBM、(ii)EBM、(iii)シンボリックポリシーに蒸留する。
論文 参考訳(メタデータ) (2024-03-21T11:54:45Z) - Discovering Behavioral Modes in Deep Reinforcement Learning Policies
Using Trajectory Clustering in Latent Space [0.0]
本稿では,DRLポリシーの行動モードを調査するための新しいアプローチを提案する。
具体的には, Pairwise Controlled Manifold Approximation Projection (PaCMAP) を次元減少に用い, TRACLUS を軌道クラスタリングに用いた。
本手法は,多種多様な行動パターンと準最適選択をポリシーによって識別し,目標とする改善を可能にする。
論文 参考訳(メタデータ) (2024-02-20T11:50:50Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
本稿では、オフラインシーケンスモデリングとオフライン強化学習をダブルポリシー推定と組み合わせたRLアルゴリズムDPEを提案する。
D4RLベンチマークを用いて,OpenAI Gymの複数のタスクで本手法を検証した。
論文 参考訳(メタデータ) (2023-08-28T20:46:07Z) - Offline Reinforcement Learning with On-Policy Q-Function Regularization [57.09073809901382]
ヒストリーデータセットと所望のポリシー間の分布シフトによって引き起こされる(潜在的に破滅的な)外挿誤差に対処する。
正規化により推定Q-関数を利用する2つのアルゴリズムを提案し、D4RLベンチマークに強い性能を示すことを示す。
論文 参考訳(メタデータ) (2023-07-25T21:38:08Z) - Verified Probabilistic Policies for Deep Reinforcement Learning [6.85316573653194]
我々は、深い強化学習のための確率的政策を検証する問題に取り組む。
本稿では,マルコフ決定プロセスの間隔に基づく抽象的アプローチを提案する。
本稿では,抽象的解釈,混合整数線形プログラミング,エントロピーに基づく洗練,確率的モデルチェックを用いて,これらのモデルを構築・解決する手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T23:55:04Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
本研究では,水文ナビゲーションに着目した安全強化学習のためのベンチマーク環境を提案する。
価値に基づく政策段階の深層強化学習(DRL)について考察する。
また,学習したモデルの振る舞いを所望の特性の集合上で検証する検証戦略を提案する。
論文 参考訳(メタデータ) (2021-12-16T16:53:56Z) - Expert-Supervised Reinforcement Learning for Offline Policy Learning and
Evaluation [21.703965401500913]
本稿では,オフライン政策学習のための不確実性定量化手法であるExpert-Supervised RL (ESRL) フレームワークを提案する。
具体的には,1)仮説テストによる安全かつ最適なポリシの学習,2)ESRLはアプリケーションコンテキストに合わせて異なるレベルのリスク逆実装を可能にし,3)後続分布を通してESRLのポリシーを解釈する方法を提案する。
論文 参考訳(メタデータ) (2020-06-23T17:43:44Z) - Continuous Action Reinforcement Learning from a Mixture of Interpretable
Experts [35.80418547105711]
本稿では,複雑な関数近似を内部値予測に保持するポリシスキームを提案する。
この論文の主な技術的貢献は、この非微分不可能な状態選択手順によってもたらされた課題に対処することである。
論文 参考訳(メタデータ) (2020-06-10T16:02:08Z) - Cautious Reinforcement Learning with Logical Constraints [78.96597639789279]
適応型安全なパッドディングは、学習プロセス中の安全性を確保しつつ、RL(Reinforcement Learning)に最適な制御ポリシーの合成を強制する。
理論的な保証は、合成されたポリシーの最適性と学習アルゴリズムの収束について利用できる。
論文 参考訳(メタデータ) (2020-02-26T00:01:08Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。