Heterogeneous Graph Pre-training Based Model for Secure and Efficient Prediction of Default Risk Propagation among Bond Issuers
- URL: http://arxiv.org/abs/2501.03268v1
- Date: Sat, 04 Jan 2025 11:10:16 GMT
- Title: Heterogeneous Graph Pre-training Based Model for Secure and Efficient Prediction of Default Risk Propagation among Bond Issuers
- Authors: Xurui Li, Xin Shan, Wenhao Yin, Haijiao Wang,
- Abstract summary: We present a novel two-stage model for efficient prediction of default risk for bond-issuing enterprises.
In the first stage, we employ an innovative Masked Autoencoders for Heterogeneous Graph (HGMAE) to pre-train on a vast enterprise knowledge graph.
In the second stage, a specialized classifier model is trained to predict default risk propagation probabilities.
- Score: 1.737435659602194
- License:
- Abstract: Efficient prediction of default risk for bond-issuing enterprises is pivotal for maintaining stability and fostering growth in the bond market. Conventional methods usually rely solely on an enterprise's internal data for risk assessment. In contrast, graph-based techniques leverage interconnected corporate information to enhance default risk identification for targeted bond issuers. Traditional graph techniques such as label propagation algorithm or deepwalk fail to effectively integrate a enterprise's inherent attribute information with its topological network data. Additionally, due to data scarcity and security privacy concerns between enterprises, end-to-end graph neural network (GNN) algorithms may struggle in delivering satisfactory performance for target tasks. To address these challenges, we present a novel two-stage model. In the first stage, we employ an innovative Masked Autoencoders for Heterogeneous Graph (HGMAE) to pre-train on a vast enterprise knowledge graph. Subsequently, in the second stage, a specialized classifier model is trained to predict default risk propagation probabilities. The classifier leverages concatenated feature vectors derived from the pre-trained encoder with the enterprise's task-specific feature vectors. Through the two-stage training approach, our model not only boosts the importance of unique bond characteristics for specific default prediction tasks, but also securely and efficiently leverage the global information pre-trained from other enterprises. Experimental results demonstrate that our proposed model outperforms existing approaches in predicting default risk for bond issuers.
Related papers
- Applying Hybrid Graph Neural Networks to Strengthen Credit Risk Analysis [4.457653449326353]
This paper presents a novel approach to credit risk prediction by employing Graph Convolutional Neural Networks (GCNNs)
The proposed method addresses the challenges faced by traditional credit risk assessment models, particularly in handling imbalanced datasets.
The study demonstrates the potential of GCNNs in improving the accuracy of credit risk prediction, offering a robust solution for financial institutions.
arXiv Detail & Related papers (2024-10-05T20:49:05Z) - Convergence-aware Clustered Federated Graph Learning Framework for Collaborative Inter-company Labor Market Forecasting [38.13767335441753]
Labor market forecasting on talent demand and supply is essential for business management and economic development.
Previous studies ignore the interconnection between demand-supply sequences among different companies for predicting variations.
We propose a Meta-personalized Convergence-aware Clustered Federated Learning framework to provide accurate and timely collaborative talent demand and supply prediction.
arXiv Detail & Related papers (2024-09-29T04:11:23Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
One-shot federated learning (OSFL) has gained attention in recent years due to its low communication cost.
In this paper, we explore the novel opportunities that diffusion models bring to OSFL and propose FedCADO.
FedCADO generates data that complies with clients' distributions and subsequently training the aggregated model on the server.
arXiv Detail & Related papers (2023-11-15T11:11:25Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
We propose an unsupervised way to predict self-driving attention by uncertainty modeling and driving knowledge integration.
Results show equivalent or even more impressive performance compared to fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2023-03-17T00:28:33Z) - Company-as-Tribe: Company Financial Risk Assessment on Tribe-Style Graph
with Hierarchical Graph Neural Networks [62.94317686301643]
Company financial risk is ubiquitous and early risk assessment for listed companies can avoid considerable losses.
Traditional methods mainly focus on the financial statements of companies and lack the complex relationships among them.
We propose a novel Hierarchical Graph Neural Network (TH-GNN) for Tribe-style graphs via two levels, with the first level to encode the structure pattern of the tribes with contrastive learning, and the second level to diffuse information based on the inter-tribe relations.
arXiv Detail & Related papers (2023-01-31T09:17:13Z) - FedGen: Generalizable Federated Learning for Sequential Data [8.784435748969806]
In many real-world distributed settings, spurious correlations exist due to biases and data sampling issues.
We present a generalizable federated learning framework called FedGen, which allows clients to identify and distinguish between spurious and invariant features.
We show that FedGen results in models that achieve significantly better generalization and can outperform the accuracy of current federated learning approaches by over 24%.
arXiv Detail & Related papers (2022-11-03T15:48:14Z) - FisrEbp: Enterprise Bankruptcy Prediction via Fusing its Intra-risk and
Spillover-Risk [4.369823783549928]
We propose a novel method that is equipped with an LSTM-based intra-risk encoder and GNNs-based spillover-risk encoder.
The intra-risk encoder is able to capture enterprise intra-risk using the statistic correlated indicators from the basic business information and litigation information.
The spillover-risk encoder consists of hypergraph neural networks and heterogeneous graph neural networks.
arXiv Detail & Related papers (2022-02-01T04:28:48Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.