FisrEbp: Enterprise Bankruptcy Prediction via Fusing its Intra-risk and
Spillover-Risk
- URL: http://arxiv.org/abs/2202.03874v1
- Date: Tue, 1 Feb 2022 04:28:48 GMT
- Title: FisrEbp: Enterprise Bankruptcy Prediction via Fusing its Intra-risk and
Spillover-Risk
- Authors: Yu Zhao, Shaopeng Wei, Yu Guo, Qing Yang, Gang Kou
- Abstract summary: We propose a novel method that is equipped with an LSTM-based intra-risk encoder and GNNs-based spillover-risk encoder.
The intra-risk encoder is able to capture enterprise intra-risk using the statistic correlated indicators from the basic business information and litigation information.
The spillover-risk encoder consists of hypergraph neural networks and heterogeneous graph neural networks.
- Score: 4.369823783549928
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose to model enterprise bankruptcy risk by fusing its
intra-risk and spillover-risk. Under this framework, we propose a novel method
that is equipped with an LSTM-based intra-risk encoder and GNNs-based
spillover-risk encoder. Specifically, the intra-risk encoder is able to capture
enterprise intra-risk using the statistic correlated indicators from the basic
business information and litigation information. The spillover-risk encoder
consists of hypergraph neural networks and heterogeneous graph neural networks,
which aim to model spillover risk through two aspects, i.e. hyperedge and
multiplex heterogeneous relations among enterprise knowledge graph,
respectively. To evaluate the proposed model, we collect multi-sources SMEs
data and build a new dataset SMEsD, on which the experimental results
demonstrate the superiority of the proposed method. The dataset is expected to
become a significant benchmark dataset for SMEs bankruptcy prediction and
promote the development of financial risk study further.
Related papers
- Graph Dimension Attention Networks for Enterprise Credit Assessment [40.87056211723355]
We propose a novel architecture named Graph Dimension Attention Network (GDAN)
GDAN incorporates a dimension-level attention mechanism to capture fine-grained risk-related characteristics.
We explore the interpretability of the GNN-based method in financial scenarios and propose a data-centric explainer for GDAN, called GDAN-DistShift.
arXiv Detail & Related papers (2024-07-16T11:24:28Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
We develop methods that permit valid control of risk when threshold and tradeoff parameters are chosen adaptively.
Our methodology supports monotone and nearly-monotone risks, but otherwise makes no distributional assumptions.
arXiv Detail & Related papers (2024-03-28T17:28:06Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - Modeling Systemic Risk: A Time-Varying Nonparametric Causal Inference
Framework [27.025720728622897]
We propose a nonparametric and time-varying directed information graph (TV-DIG) framework to estimate the evolving causal structure in time series networks.
We apply this framework to identify and monitor the evolution of interconnectedness and systemic risk among major assets and industrial sectors within the financial network.
arXiv Detail & Related papers (2023-12-27T20:09:57Z) - Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks [142.67349734180445]
Existing algorithms that provide risk-awareness to deep neural networks are complex and ad-hoc.
Here we present capsa, a framework for extending models with risk-awareness.
arXiv Detail & Related papers (2023-08-01T02:07:47Z) - Company-as-Tribe: Company Financial Risk Assessment on Tribe-Style Graph
with Hierarchical Graph Neural Networks [62.94317686301643]
Company financial risk is ubiquitous and early risk assessment for listed companies can avoid considerable losses.
Traditional methods mainly focus on the financial statements of companies and lack the complex relationships among them.
We propose a novel Hierarchical Graph Neural Network (TH-GNN) for Tribe-style graphs via two levels, with the first level to encode the structure pattern of the tribes with contrastive learning, and the second level to diffuse information based on the inter-tribe relations.
arXiv Detail & Related papers (2023-01-31T09:17:13Z) - Deep Learning for Systemic Risk Measures [3.274367403737527]
The aim of this paper is to study a new methodological framework for systemic risk measures.
Under this new framework, systemic risk measures can be interpreted as the minimal amount of cash that secures the aggregated system.
Deep learning is increasingly receiving attention in financial modelings and risk management.
arXiv Detail & Related papers (2022-07-02T05:01:19Z) - A Survey of Risk-Aware Multi-Armed Bandits [84.67376599822569]
We review various risk measures of interest, and comment on their properties.
We consider algorithms for the regret minimization setting, where the exploration-exploitation trade-off manifests.
We conclude by commenting on persisting challenges and fertile areas for future research.
arXiv Detail & Related papers (2022-05-12T02:20:34Z) - Detecting and Mitigating Test-time Failure Risks via Model-agnostic
Uncertainty Learning [30.86992077157326]
This paper introduces Risk Advisor, a novel post-hoc meta-learner for estimating failure risks and predictive uncertainties of any already-trained black-box classification model.
In addition to providing a risk score, the Risk Advisor decomposes the uncertainty estimates into aleatoric and epistemic uncertainty components.
Experiments on various families of black-box classification models and on real-world and synthetic datasets show that the Risk Advisor reliably predicts deployment-time failure risks.
arXiv Detail & Related papers (2021-09-09T17:23:31Z) - Deep Risk Model: A Deep Learning Solution for Mining Latent Risk Factors
to Improve Covariance Matrix Estimation [8.617532047238461]
We propose a deep learning solution to effectively "design" risk factors with neural networks.
Our method can obtain $1.9%$ higher explained variance measured by $R2$ and also reduce the risk of a global minimum variance portfolio.
arXiv Detail & Related papers (2021-07-12T05:30:50Z) - Risk-Constrained Thompson Sampling for CVaR Bandits [82.47796318548306]
We consider a popular risk measure in quantitative finance known as the Conditional Value at Risk (CVaR)
We explore the performance of a Thompson Sampling-based algorithm CVaR-TS under this risk measure.
arXiv Detail & Related papers (2020-11-16T15:53:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.