論文の概要: OpenLKA: an open dataset of lane keeping assist from market autonomous vehicles
- arxiv url: http://arxiv.org/abs/2501.03287v1
- Date: Mon, 06 Jan 2025 04:46:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:50:02.689790
- Title: OpenLKA: an open dataset of lane keeping assist from market autonomous vehicles
- Title(参考訳): OpenLKA: 自動運転車を補助するレーンのオープンデータセット
- Authors: Yuhang Wang, Abdulaziz Alhuraish, Shengming Yuan, Shuyi Wang, Hao Zhou,
- Abstract要約: レーンキーピング・アシスト(LKA)は近年の自動車の標準機能となっている。
LKAシステムの運用特性と安全性能は未調査のままである。
フロリダ州タンパの大手自動車メーカーからLKAシステムを広範囲にテストした。
- 参考スコア(独自算出の注目度): 23.083443555590065
- License:
- Abstract: The Lane Keeping Assist (LKA) system has become a standard feature in recent car models. While marketed as providing auto-steering capabilities, the system's operational characteristics and safety performance remain underexplored, primarily due to a lack of real-world testing and comprehensive data. To fill this gap, we extensively tested mainstream LKA systems from leading U.S. automakers in Tampa, Florida. Using an innovative method, we collected a comprehensive dataset that includes full Controller Area Network (CAN) messages with LKA attributes, as well as video, perception, and lateral trajectory data from a high-quality front-facing camera equipped with advanced vision detection and trajectory planning algorithms. Our tests spanned diverse, challenging conditions, including complex road geometry, adverse weather, degraded lane markings, and their combinations. A vision language model (VLM) further annotated the videos to capture weather, lighting, and traffic features. Based on this dataset, we present an empirical overview of LKA's operational features and safety performance. Key findings indicate: (i) LKA is vulnerable to faint markings and low pavement contrast; (ii) it struggles in lane transitions (merges, diverges, intersections), often causing unintended departures or disengagements; (iii) steering torque limitations lead to frequent deviations on sharp turns, posing safety risks; and (iv) LKA systems consistently maintain rigid lane-centering, lacking adaptability on tight curves or near large vehicles such as trucks. We conclude by demonstrating how this dataset can guide both infrastructure planning and self-driving technology. In view of LKA's limitations, we recommend improvements in road geometry and pavement maintenance. Additionally, we illustrate how the dataset supports the development of human-like LKA systems via VLM fine-tuning and Chain of Thought reasoning.
- Abstract(参考訳): Lane Keeping Assist (LKA) システムは、近年の自動車モデルにおいて標準的な機能となっている。
オートステアリング機能の提供として販売されているが、実際のテストや包括的なデータがないため、システムの運用特性と安全性性能は未調査のままである。
このギャップを埋めるため、フロリダ州タンパの米国の主要自動車メーカーからLKAシステムを広範囲にテストした。
先進的な視覚検出と軌跡計画アルゴリズムを備えた高品質の前面カメラから,LKA属性のフルコントローラエリアネットワーク(CAN)メッセージに加えて,映像,知覚,横方向の軌跡データを含む包括的データセットを収集した。
私たちのテストは、複雑な道路形状、悪天候、劣化した車線標識、それらの組み合わせなど、多様な困難条件にまたがって行われた。
視覚言語モデル(VLM)はさらに、天気、照明、交通の特徴を捉えるためにビデオに注釈を付けた。
本データセットに基づいて,LKAの運用機能と安全性性能を実証的に概観する。
主な発見は次のとおりである。
(i)LKAは、かすかなマーキングと低い舗装コントラストに弱い。
(二)車線遷移(合併、分岐、交差点)に苦しむことがあり、しばしば意図しない出発や離線を引き起こすこと。
三 トルク制限の操舵は、急旋回を頻発し、安全リスクを訴える。
(4)LKAシステムは、厳格な車線中心を一貫して維持し、タイトカーブやトラックなどの大型車に近いものに適応性に欠ける。
私たちは、このデータセットがインフラ計画と自動運転技術の両方をガイドできることを示すことで締めくくります。
LKAの限界を考慮すると、道路形状と舗装維持の改善を推奨する。
さらに、このデータセットがVLMファインチューニングと思考の連鎖による人間ライクなLKAシステムの開発をどのようにサポートするかを説明する。
関連論文リスト
- An Efficient Approach to Generate Safe Drivable Space by LiDAR-Camera-HDmap Fusion [13.451123257796972]
ドライビング可能な空間抽出のための自律走行車(AV)のための高精度で堅牢な認識モジュールを提案する。
我々の研究は、LiDAR、カメラ、HDマップデータ融合を利用した、堅牢で汎用的な知覚モジュールを導入している。
我々のアプローチは実際のデータセットでテストされ、その信頼性は、私たちの自律シャトルであるWATonoBusの日々の(厳しい雪の天候を含む)運用中に検証されます。
論文 参考訳(メタデータ) (2024-10-29T17:54:02Z) - AGSENet: A Robust Road Ponding Detection Method for Proactive Traffic Safety [30.305692955291033]
道路の沈み込みは、車両を制御不能にさせ、小さなフェンダーの曲がり角から激しい衝突に至る事故を引き起こすことにより、道路の安全に深刻な脅威をもたらす。
既存技術は、複雑な道路テクスチャと反射特性の影響による可変な池色化により、道路の熟成を正確に識別するのに苦慮している。
本稿では,自己注意型グローバル・サリエンシ・エンハンス・ネットワーク(AGSENet)という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-22T13:21:36Z) - Homography Guided Temporal Fusion for Road Line and Marking Segmentation [73.47092021519245]
道路線やマーキングは、移動車両、影、グレアの存在下でしばしば閉鎖される。
本稿では,映像フレームを補足的に利用するHomography Guided Fusion (HomoFusion) モジュールを提案する。
カメラ固有のデータと地上平面の仮定をクロスフレーム対応に利用することにより,高速・高精度性能が向上した軽量ネットワークの実現が期待できることを示す。
論文 参考訳(メタデータ) (2024-04-11T10:26:40Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
本稿では,自動走行車に特化して設計された最先端道路側認識システムであるMSightについて述べる。
MSightは、リアルタイムの車両検出、ローカライゼーション、トラッキング、短期的な軌道予測を提供する。
評価は、待ち時間を最小限にしてレーンレベルの精度を維持するシステムの能力を強調している。
論文 参考訳(メタデータ) (2023-10-08T21:32:30Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
道路表面の再構築は、車両の走行計画と制御システムの解析と予測を促進するのに役立つ。
我々は,様々な運転条件下で,特定のプラットフォームで収集した実世界,高解像度,高精度のデータセットであるRoad Surface Reconstructionデータセットを紹介した。
約16,000対のステレオ画像、原点雲、地中深度・不均等地図を含む一般的な道路形態を網羅している。
論文 参考訳(メタデータ) (2023-10-03T17:59:32Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
本稿では,視覚に基づくエンドツーエンド自動運転のための安全保証学習フレームワークを提案する。
我々は、勾配降下によりエンドツーエンドに訓練された微分制御バリア関数(dCBF)を備えた学習システムを設計する。
論文 参考訳(メタデータ) (2022-03-04T16:14:33Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
本稿では、歩行者を共同で検出し、32の歩行者属性を認識するという課題に対処する。
本稿では,複合フィールドフレームワークを用いたマルチタスク学習(MTL)モデルを提案する。
競合検出と属性認識の結果と,より安定したMTLトレーニングを示す。
論文 参考訳(メタデータ) (2020-12-04T15:10:12Z) - Lane Detection Model Based on Spatio-Temporal Network With Double
Convolutional Gated Recurrent Units [11.968518335236787]
レーン検出は今後しばらくは未解決の問題として残るだろう。
二重円錐 Gated Recurrent Units (ConvGRUs) を用いた時空間ネットワークは、困難なシーンにおける車線検出に対処することを提案した。
我々のモデルは最先端の車線検出モデルより優れている。
論文 参考訳(メタデータ) (2020-08-10T06:50:48Z) - A Multi-Agent Reinforcement Learning Approach For Safe and Efficient
Behavior Planning Of Connected Autonomous Vehicles [21.132777568170702]
我々は、コネクテッド・自動運転車のための情報共有型強化学習フレームワークを設計する。
提案手法は, 平均速度と快適性の観点から, CAV システムの効率性を向上させることができることを示す。
我々は,共用視覚が早期に障害物を観測し,交通渋滞を避けるために行動を起こすのに役立つことを示すために,障害物回避シナリオを構築した。
論文 参考訳(メタデータ) (2020-03-09T19:15:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。