ADePT: Adaptive Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning
- URL: http://arxiv.org/abs/2501.03291v1
- Date: Mon, 06 Jan 2025 08:20:04 GMT
- Title: ADePT: Adaptive Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning
- Authors: Pengwei Tang, Xiaolin Hu, Yong Liu,
- Abstract summary: Prompt Tuning (PT) enables the adaptation of Pre-trained Large Language Models (PLMs) to downstream tasks.
Decomposed Prompt Tuning (DePT) has demonstrated superior adaptation capabilities.
We introduce textbfAdaptive textbfDecomposed textbfPrompt textbfTuning (ADePT)
- Score: 23.511954119467735
- License:
- Abstract: Prompt Tuning (PT) enables the adaptation of Pre-trained Large Language Models (PLMs) to downstream tasks by optimizing a small amount of soft virtual tokens, which are prepended to the input token embeddings. Recently, Decomposed Prompt Tuning (DePT) has demonstrated superior adaptation capabilities by decomposing the soft prompt into a shorter soft prompt and a pair of low-rank matrices. The product of the pair of low-rank matrices is added to the input token embeddings to offset them. Additionally, DePT achieves faster inference compared to PT due to the shorter soft prompt. However, in this paper, we find that the position-based token embedding offsets of DePT restricts its ability to generalize across diverse model inputs, and that the shared embedding offsets across many token embeddings result in sub-optimization. To tackle these issues, we introduce \textbf{A}daptive \textbf{De}composed \textbf{P}rompt \textbf{T}uning (ADePT), which is composed of a short soft prompt and a shallow token-shared feed-forward neural network. ADePT utilizes the token-shared feed-forward neural network to learn the embedding offsets for each token, enabling adaptive embedding offsets that vary according to the model input and better optimization of token embedding offsets. This enables ADePT to achieve superior adaptation performance without requiring more inference time or additional trainable parameters compared to vanilla PT and its variants. In comprehensive experiments across 23 natural language processing (NLP) tasks and 4 typical PLMs of different scales, we show that ADePT consistently surpasses the leading parameter-efficient fine-tuning (PEFT) methods, and even outperforms the full fine-tuning baseline in certain scenarios. Code is available at \url{https://github.com/HungerPWAY/ADePT}.
Related papers
- Efficient and Effective Prompt Tuning via Prompt Decomposition and Compressed Outer Product [8.014705094248589]
Low- parameters prompt tuning method outperforms state-of-the-art PT-based and LoRA-based methods in performance and efficiency.
Experiments across six architectures and eight datasets demonstrate that LAMP outperforms state-of-the-art PT-based and LoRA-based methods in performance and efficiency.
arXiv Detail & Related papers (2025-02-16T05:50:12Z) - ACCEPT: Adaptive Codebook for Composite and Efficient Prompt Tuning [26.43363174779337]
We propose Adaptive Codebook for Composite and Efficient Prompt Tuning (ACCEPT)
In our method, we refer to the concept of product quantization (PQ), allowing all soft prompts to share a set of learnable codebook vectors in each subspace.
We achieve the superior performance on 17 diverse natural language tasks by tuning only 0.3% of parameters of the Language Models.
arXiv Detail & Related papers (2024-10-10T07:48:53Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
Dynamic Tuning (DyT) is a novel approach to improve both parameter and inference efficiency for ViT adaptation.
DyT achieves superior performance compared to existing PEFT methods while evoking only 71% of their FLOPs on the VTAB-1K benchmark.
arXiv Detail & Related papers (2024-03-18T14:05:52Z) - Attention Prompt Tuning: Parameter-efficient Adaptation of Pre-trained
Models for Spatiotemporal Modeling [32.603558214472265]
We introduce Attention Prompt Tuning (APT) for video-based applications such as action recognition.
APT involves injecting a set of learnable prompts along with data tokens during fine-tuning while keeping the backbone frozen.
The proposed approach greatly reduces the number of FLOPs and latency while achieving a significant performance boost.
arXiv Detail & Related papers (2024-03-11T17:59:41Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
We propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT)
We validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning.
arXiv Detail & Related papers (2023-12-19T06:06:30Z) - DePT: Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning [14.975436239088312]
We propose DePT, which decomposes the soft prompt into a shorter soft prompt and a pair of low-rank matrices that are then optimised with two different learning rates.
We demonstrate that DePT outperforms state-of-the-art PEFT approaches, including the full fine-tuning baseline, in some scenarios.
arXiv Detail & Related papers (2023-09-11T00:02:05Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
In vision-language pre-trained models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks.
We propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning.
arXiv Detail & Related papers (2023-06-27T05:43:47Z) - Towards Adaptive Prefix Tuning for Parameter-Efficient Language Model
Fine-tuning [32.84435258519842]
We propose Adaptive Prefix Tuning (APT) to adjust the prefix in terms of both fine-grained token level and coarse-grained layer level with a gate mechanism.
Experiments on the SuperGLUE and NER datasets show the effectiveness of APT.
arXiv Detail & Related papers (2023-05-24T14:51:01Z) - Sensitivity-Aware Visual Parameter-Efficient Fine-Tuning [91.5113227694443]
We propose a novel visual.
sensuous-aware fine-Tuning (SPT) scheme.
SPT allocates trainable parameters to task-specific important positions.
Experiments on a wide range of downstream recognition tasks show that our SPT is complementary to the existing PEFT methods.
arXiv Detail & Related papers (2023-03-15T12:34:24Z) - Decoder Tuning: Efficient Language Understanding as Decoding [84.68266271483022]
We present Decoder Tuning (DecT), which in contrast optimize task-specific decoder networks on the output side.
By gradient-based optimization, DecT can be trained within several seconds and requires only one P query per sample.
We conduct extensive natural language understanding experiments and show that DecT significantly outperforms state-of-the-art algorithms with a $200times$ speed-up.
arXiv Detail & Related papers (2022-12-16T11:15:39Z) - BBTv2: Pure Black-Box Optimization Can Be Comparable to Gradient Descent
for Few-Shot Learning [83.26610968655815]
Black-Box Tuning is a derivative-free approach to optimize continuous prompt tokens prepended to the input of language models.
We present BBTv2, a pure black-box optimization approach that can drive language models to achieve comparable results to gradient-based optimization.
arXiv Detail & Related papers (2022-05-23T11:10:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.