Efficient and Effective Prompt Tuning via Prompt Decomposition and Compressed Outer Product
- URL: http://arxiv.org/abs/2502.12200v1
- Date: Sun, 16 Feb 2025 05:50:12 GMT
- Title: Efficient and Effective Prompt Tuning via Prompt Decomposition and Compressed Outer Product
- Authors: Pengxiang Lan, Haoyu Xu, Enneng Yang, Yuliang Liang, Guibing Guo, Jianzhe Zhao, Xingwei Wang,
- Abstract summary: Low- parameters prompt tuning method outperforms state-of-the-art PT-based and LoRA-based methods in performance and efficiency.
Experiments across six architectures and eight datasets demonstrate that LAMP outperforms state-of-the-art PT-based and LoRA-based methods in performance and efficiency.
- Score: 8.014705094248589
- License:
- Abstract: Prompt tuning (PT) offers a cost-effective alternative to fine-tuning large-scale pre-trained language models (PLMs), requiring only a few parameters in soft prompt tokens added before the input text. However, existing PT approaches face two significant issues: (i) They overlook intrinsic semantic associations between soft prompt tokens, leading to high discreteness and limited interactions, thus reducing the model's comprehension and effectiveness in complex tasks. (ii) Due to the complexity of downstream tasks, long soft prompt is necessitated to improve performance, but prompt length correlates positively with memory usage and computational costs. Achieving high efficiency and performance remains an ongoing challenge. To address these issues, we propose a novel Low-parameters prompt tuning (LAMP) method, which leverages prompt decomposition and compressed outer product. Specifically, the prompt decomposition module employs Truncated SVD to reduce training parameters and significantly lower the dimensionality of the soft prompt parameter space. It then utilizes a compressed outer product module to facilitate multiple interactions among prompt tokens, exploring their intrinsic associations to enhance knowledge representation. Finally, LAMP uses average pooling to reduce memory usage and training/inference time. Extensive experiments across six architectures and eight datasets demonstrate that LAMP outperforms state-of-the-art PT-based and LoRA-based methods in performance and efficiency.
Related papers
- Robustness-aware Automatic Prompt Optimization [45.43458098928881]
We propose BATprompt, a novel method for prompt generation designed to withstand input perturbations.
Inspired by adversarial training techniques, BATprompt demonstrates strong performance on a variety of perturbed tasks.
We evaluate BATprompt on multiple datasets across both language understanding and generation tasks.
arXiv Detail & Related papers (2024-12-24T06:05:08Z) - EPE-P: Evidence-based Parameter-efficient Prompting for Multimodal Learning with Missing Modalities [20.991711160707755]
Missing modalities are a common challenge in real-world multimodal learning scenarios, occurring during both training and testing.
Existing methods for managing missing modalities often require the design of separate prompts for each modality or missing case.
We propose Evidence-based.
Efficient Prompting (EPE-P), a novel and parameter-efficient method for pretrained multimodal networks.
arXiv Detail & Related papers (2024-12-23T16:01:12Z) - PAR: Prompt-Aware Token Reduction Method for Efficient Large Multimodal Models [32.33892531885448]
Multimodal large language models (MLLMs) demonstrate strong performance across visual tasks.
But their efficiency is hindered by significant computational and memory demands from processing long contexts in multimodal inputs.
We introduce PAR (Prompt-Aware Token Reduction), a novel and plug-and-play approach that reduces visual tokens efficiently without compromising model performance.
arXiv Detail & Related papers (2024-10-09T07:13:22Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Attention Prompt Tuning: Parameter-efficient Adaptation of Pre-trained
Models for Spatiotemporal Modeling [32.603558214472265]
We introduce Attention Prompt Tuning (APT) for video-based applications such as action recognition.
APT involves injecting a set of learnable prompts along with data tokens during fine-tuning while keeping the backbone frozen.
The proposed approach greatly reduces the number of FLOPs and latency while achieving a significant performance boost.
arXiv Detail & Related papers (2024-03-11T17:59:41Z) - Learning to Compress Prompt in Natural Language Formats [54.06967020905763]
Large language models (LLMs) are great at processing multiple natural language processing tasks.
LLMs are constrained by inferior performance with long context, slow inference speed, and the high cost of computing the results.
This work aims to compress lengthy prompts in the form of natural language with LLM transferability.
arXiv Detail & Related papers (2024-02-28T20:41:21Z) - DePT: Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning [14.975436239088312]
We propose DePT, which decomposes the soft prompt into a shorter soft prompt and a pair of low-rank matrices that are then optimised with two different learning rates.
We demonstrate that DePT outperforms state-of-the-art PEFT approaches, including the full fine-tuning baseline, in some scenarios.
arXiv Detail & Related papers (2023-09-11T00:02:05Z) - Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM
Inference with Transferable Prompt [96.24800696597707]
We introduce a new perspective to optimize this trade-off by prompting compressed models.
We propose a soft prompt learning method where we expose the compressed model to the prompt learning process.
Our experimental analysis suggests our soft prompt strategy greatly improves the performance of the 8x compressed LLaMA-7B model.
arXiv Detail & Related papers (2023-05-17T20:45:13Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
Instance-wise Prompt Tuning (IPT) is the first prompt learning paradigm that injects knowledge from the input data instances to the prompts.
IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
arXiv Detail & Related papers (2022-06-04T10:08:50Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL)
RLPrompt is flexibly applicable to different types of LMs, such as masked gibberish (e.g., grammaBERT) and left-to-right models (e.g., GPTs)
Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods.
arXiv Detail & Related papers (2022-05-25T07:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.