Probing Stress and Magnetism at High Pressures with Two-Dimensional Quantum Sensors
- URL: http://arxiv.org/abs/2501.03319v1
- Date: Mon, 06 Jan 2025 19:00:01 GMT
- Title: Probing Stress and Magnetism at High Pressures with Two-Dimensional Quantum Sensors
- Authors: Guanghui He, Ruotian Gong, Zhipan Wang, Zhongyuan Liu, Jeonghoon Hong, Tongxie Zhang, Ariana L. Riofrio, Zachary Rehfuss, Mingfeng Chen, Changyu Yao, Thomas Poirier, Bingtian Ye, Xi Wang, Sheng Ran, James H. Edgar, Shixiong Zhang, Norman Y. Yao, Chong Zu,
- Abstract summary: We integrate optical spin defects within a thin layer of two-dimensional (2D) materials directly into the high-pressure chamber.
Compared to nitrogen-vacancy centers embedded in diamond anvils, our 2D sensors exhibit around three times stronger response to local stress.
Our work demonstrates an integrated quantum sensing device for high-pressure experiments, offering potential applications in probing pressure-induced phenomena.
- Score: 10.086592785067774
- License:
- Abstract: Pressure serves as a fundamental tuning parameter capable of drastically modifying all properties of matter. The advent of diamond anvil cells (DACs) has enabled a compact and tabletop platform for generating extreme pressure conditions in laboratory settings. However, the limited spatial dimensions and ultrahigh pressures within these environments present significant challenges for conventional spectroscopy techniques. In this work, we integrate optical spin defects within a thin layer of two-dimensional (2D) materials directly into the high-pressure chamber, enabling an in situ quantum sensing platform for mapping local stress and magnetic environments up to 4~GPa. Compared to nitrogen-vacancy (NV) centers embedded in diamond anvils, our 2D sensors exhibit around three times stronger response to local stress and provide nanoscale proximity to the target sample in heterogeneous devices. We showcase the versatility of our approach by imaging both stress gradients within the high-pressure chamber and a pressure-driven magnetic phase transition in a room-temperature self-intercalated van der Waals ferromagnet, Cr$_{1+\delta}$Te$_2$. Our work demonstrates an integrated quantum sensing device for high-pressure experiments, offering potential applications in probing pressure-induced phenomena such as superconductivity, magnetism, and mechanical deformation.
Related papers
- Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Imaging the Meissner effect and flux trapping in a hydride
superconductor at megabar pressures using a nanoscale quantum sensor [16.508647472216516]
We demonstrate the ability to perform local magnetometry inside of a diamond anvil cell with sub-micron spatial resolution at megabar pressures.
We apply our technique to characterize a recently discovered hydride superconductor, CeH$_9$.
arXiv Detail & Related papers (2023-06-05T18:00:00Z) - Spectroscopy Study on NV Sensors in Diamond-based High-pressure Devices [2.1649715139344483]
Nitrogen-vacancy (NV) centers have emerged as a robust and versatile quantum sensor in pressurized environments.
We experimentally reveal a dramatic difference in the partially reconstructed stress tensors of INVs and NDs incorporated in the same diamond anvil cell.
This provides insights on the suitable choice of NV sensors for specific purposes and the stress distribution in a DAC.
arXiv Detail & Related papers (2023-01-13T10:10:19Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - AC sensing using nitrogen vacancy centers in a diamond anvil cell up to
6 GPa [0.22485007639406512]
Nitrogen-vacancy color centers in diamond have attracted broad attention as quantum sensors.
Optically-based nuclear magnetic resonance may be possible at pressures greater than a few GPa.
arXiv Detail & Related papers (2021-10-12T20:26:04Z) - AC susceptometry of 2D van der Waals magnets enabled by the coherent
control of quantum sensors [4.103177660092151]
We coherently control the NV center's spin precession to achieve ultra-sensitive ac susceptometry of a 2D ferromagnet.
We show that domain wall mobility is enhanced in ultrathin CrBr3, with minimal decrease for frequencies exceeding hundreds of kilohertz.
Our technique extends NV magnetometry to the multi-functional ac and dc magnetic characterization of wide-ranging spintronic materials at the nanoscale.
arXiv Detail & Related papers (2021-05-17T17:28:46Z) - Sub-nanoscale Temperature, Magnetic Field and Pressure sensing with Spin
Centers in 2D hexagonal Boron Nitride [0.0]
We show that negatively charged boron vacancies ($V_B-$) in hexagonal boron nitride (hBN) can be used as atomic scale sensors.
These applications are possible due to the high-spin triplet ground state and bright spin-dependent photoluminescence.
Our work is important for the future use of spin-rich hBN layers as sensors in heterostructures of functionalized 2D materials.
arXiv Detail & Related papers (2021-02-22T10:52:15Z) - Casimir force between Weyl semimetals in a chiral medium [68.8204255655161]
We study the Casimir effect in a system composed of two Weyl semimetals separated by a gap filled with a chiral medium.
We find that if the medium between the two WSMs is a Faraday material, a repulsive Casimir force can be obtained.
arXiv Detail & Related papers (2020-01-28T14:08:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.