論文の概要: A Self-supervised Diffusion Bridge for MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2501.03430v1
- Date: Mon, 06 Jan 2025 23:23:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:46:54.003087
- Title: A Self-supervised Diffusion Bridge for MRI Reconstruction
- Title(参考訳): MRI再建のための自己教師付き拡散ブリッジ
- Authors: Harry Gao, Weijie Gan, Yuyang Hu, Hongyu An, Ulugbek S. Kamilov,
- Abstract要約: 拡散ブリッジ(DB)は、2対のイメージ分布を補間することでより高速なサンプリングを可能にする。
我々は、利用可能な雑音測定に基づいてDBを直接訓練する新しい自己教師手法として、SelfDBを提案する。
- 参考スコア(独自算出の注目度): 7.146614143127391
- License:
- Abstract: Diffusion bridges (DBs) are a class of diffusion models that enable faster sampling by interpolating between two paired image distributions. Training traditional DBs for image reconstruction requires high-quality reference images, which limits their applicability to settings where such references are unavailable. We propose SelfDB as a novel self-supervised method for training DBs directly on available noisy measurements without any high-quality reference images. SelfDB formulates the diffusion process by further sub-sampling the available measurements two additional times and training a neural network to reverse the corresponding degradation process by using the available measurements as the training targets. We validate SelfDB on compressed sensing MRI, showing its superior performance compared to the denoising diffusion models.
- Abstract(参考訳): 拡散ブリッジ(英: Diffusion Bridges、DB)は、2対の像分布を補間することによってより高速なサンプリングを可能にする拡散モデルのクラスである。
画像再構成のための従来のDBのトレーニングには高品質な参照イメージが必要である。
高品質な参照画像がなくても、利用可能な雑音測定に基づいてDBを直接訓練する新しい自己教師手法として、SelfDBを提案する。
SelfDBは、利用可能な測定を2回追加してサブサンプリングすることで拡散プロセスを定式化し、トレーニング対象として利用可能な測定値を使用することで、対応する劣化プロセスを逆転するようにニューラルネットワークをトレーニングする。
圧縮センシングMRIにおけるSelfDBの有効性を検証し,デノナイジング拡散モデルと比較して優れた性能を示した。
関連論文リスト
- Self-Consistent Recursive Diffusion Bridge for Medical Image Translation [6.850683267295248]
ディノイング拡散モデル (DDM) は, 対向モデルよりも訓練安定性が向上し, 医用画像翻訳において近年注目を集めている。
医用画像翻訳の性能向上を目的とした自己整合反復拡散橋(SelfRDB)を提案する。
マルチコントラストMRIおよびMRI-CT翻訳における包括的解析は、SelfRDBが競合する手法に対して優れた性能を提供することを示している。
論文 参考訳(メタデータ) (2024-05-10T19:39:55Z) - Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data [56.81246107125692]
Ambient Diffusion Posterior Smpling (A-DPS) は、ある種類の腐敗に対して事前訓練された生成モデルである。
A-DPSは、いくつかの画像復元タスクにおいて、クリーンなデータで訓練されたモデルよりも、速度と性能の両方で優れていることが示される。
我々はAmbient Diffusionフレームワークを拡張して、FourierサブサンプルのマルチコイルMRI測定にのみアクセスしてMRIモデルをトレーニングする。
論文 参考訳(メタデータ) (2024-03-13T17:28:20Z) - TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
本稿では,T-DiffReconという名前の拡散モデルに基づくMRI再構成法を提案する。
また、モデルにより生成されたMRI画像の品質を高めるために、MF-UNetモジュールを組み込むことを提案する。
論文 参考訳(メタデータ) (2024-02-17T13:09:00Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
拡散モデルは、高い試料品質のため、MRIの再生を加速するために人気を博している。
推論時に柔軟にフォワードモデルを組み込んだまま、効果的にリッチなデータプリエントとして機能することができる。
拡散モデル(SMRD)を用いたSUREに基づくMRI再構成を導入し,テスト時の堅牢性を向上する。
論文 参考訳(メタデータ) (2023-10-03T05:05:35Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - SDDM: Score-Decomposed Diffusion Models on Manifolds for Unpaired
Image-to-Image Translation [96.11061713135385]
本研究は,画像生成時の絡み合った分布を明示的に最適化する,新しいスコア分解拡散モデルを提案する。
我々は、スコア関数の精製部分とエネルギー誘導を等しくし、多様体上の多目的最適化を可能にする。
SDDMは既存のSBDMベースの手法よりも優れており、I2Iベンチマークでは拡散ステップがはるかに少ない。
論文 参考訳(メタデータ) (2023-08-04T06:21:57Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Persistently Trained, Diffusion-assisted Energy-based Models [18.135784288023928]
我々は,拡散データを導入し,持続的トレーニングを通じて拡散補助EBMと呼ばれる共同ESMを学習する。
持続的に訓練されたESMは、長期安定、訓練後の画像生成、配当検出の精度の向上を同時に達成できることを示す。
論文 参考訳(メタデータ) (2023-04-21T02:29:18Z) - Score-based diffusion models for accelerated MRI [35.3148116010546]
本研究では,画像中の逆問題を容易に解けるような条件分布からデータをサンプリングする方法を提案する。
我々のモデルは、訓練のためにのみ等級画像を必要とするが、複雑な値のデータを再構成することができ、さらに並列画像まで拡張できる。
論文 参考訳(メタデータ) (2021-10-08T08:42:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。