Mixture-of-Experts Graph Transformers for Interpretable Particle Collision Detection
- URL: http://arxiv.org/abs/2501.03432v2
- Date: Wed, 08 Jan 2025 15:57:01 GMT
- Title: Mixture-of-Experts Graph Transformers for Interpretable Particle Collision Detection
- Authors: Donatella Genovese, Alessandro Sgroi, Alessio Devoto, Samuel Valentine, Lennox Wood, Cristiano Sebastiani, Stefano Giagu, Monica D'Onofrio, Simone Scardapane,
- Abstract summary: We propose a novel approach that combines a Graph Transformer model with Mixture-of-Expert layers to achieve high predictive performance.
We evaluate the model on simulated events from the ATLAS experiment, focusing on distinguishing rare Supersymmetric signal events.
This approach underscores the importance of explainability in machine learning methods applied to high energy physics.
- Score: 36.56642608984189
- License:
- Abstract: The Large Hadron Collider at CERN produces immense volumes of complex data from high-energy particle collisions, demanding sophisticated analytical techniques for effective interpretation. Neural Networks, including Graph Neural Networks, have shown promise in tasks such as event classification and object identification by representing collisions as graphs. However, while Graph Neural Networks excel in predictive accuracy, their "black box" nature often limits their interpretability, making it difficult to trust their decision-making processes. In this paper, we propose a novel approach that combines a Graph Transformer model with Mixture-of-Expert layers to achieve high predictive performance while embedding interpretability into the architecture. By leveraging attention maps and expert specialization, the model offers insights into its internal decision-making, linking predictions to physics-informed features. We evaluate the model on simulated events from the ATLAS experiment, focusing on distinguishing rare Supersymmetric signal events from Standard Model background. Our results highlight that the model achieves competitive classification accuracy while providing interpretable outputs that align with known physics, demonstrating its potential as a robust and transparent tool for high-energy physics data analysis. This approach underscores the importance of explainability in machine learning methods applied to high energy physics, offering a path toward greater trust in AI-driven discoveries.
Related papers
- TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
We propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component.
To assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field.
arXiv Detail & Related papers (2024-11-23T05:31:25Z) - Tackling the Accuracy-Interpretability Trade-off in a Hierarchy of Machine Learning Models for the Prediction of Extreme Heatwaves [41.94295877935867]
We perform probabilistic forecasts of extreme heatwaves over France using a hierarchy of increasingly complex Machine Learning models.
CNNs provide higher accuracy, but their black-box nature severely limits interpretability.
ScatNet achieves similar performance to CNNs while providing greater transparency.
arXiv Detail & Related papers (2024-10-01T18:15:04Z) - Enhancing High-Energy Particle Physics Collision Analysis through Graph Data Attribution Techniques [0.0]
This paper uses a simulated particle collision dataset to integrate influence analysis inside the graph classification pipeline.
By using a Graph Neural Network for initial training, we applied a gradient-based data influence method to identify influential training samples.
By analyzing the discarded elements we can provide further insights about the event classification task.
arXiv Detail & Related papers (2024-07-20T12:40:03Z) - Equivariant Graph Neural Networks for Charged Particle Tracking [1.6626046865692057]
EuclidNet is a novel symmetry-equivariant GNN for charged particle tracking.
We benchmark it against the state-of-the-art Interaction Network on the TrackML dataset.
Our results show that EuclidNet achieves near-state-of-the-art performance at small model scales.
arXiv Detail & Related papers (2023-04-11T15:43:32Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - GINNs: Graph-Informed Neural Networks for Multiscale Physics [1.1470070927586016]
Graph-Informed Neural Network (GINN) is a hybrid approach combining deep learning with probabilistic graphical models (PGMs)
GINNs produce kernel density estimates of relevant non-Gaussian, skewed QoIs with tight confidence intervals.
arXiv Detail & Related papers (2020-06-26T05:47:45Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.