Rethinking Adversarial Attacks in Reinforcement Learning from Policy Distribution Perspective
- URL: http://arxiv.org/abs/2501.03562v2
- Date: Wed, 08 Jan 2025 08:57:32 GMT
- Title: Rethinking Adversarial Attacks in Reinforcement Learning from Policy Distribution Perspective
- Authors: Tianyang Duan, Zongyuan Zhang, Zheng Lin, Yue Gao, Ling Xiong, Yong Cui, Hongbin Liang, Xianhao Chen, Heming Cui, Dong Huang,
- Abstract summary: We propose the Distribution-Aware Projected Gradient Descent attack (DAPGD)<n>DAPGD uses distribution similarity as the gradient perturbation input to attack the policy network.<n>Our experiment results demonstrate that DAPGD achieves SOTA results compared to the baselines in three robot navigation tasks.
- Score: 17.812046299904576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Reinforcement Learning (DRL) suffers from uncertainties and inaccuracies in the observation signal in realworld applications. Adversarial attack is an effective method for evaluating the robustness of DRL agents. However, existing attack methods targeting individual sampled actions have limited impacts on the overall policy distribution, particularly in continuous action spaces. To address these limitations, we propose the Distribution-Aware Projected Gradient Descent attack (DAPGD). DAPGD uses distribution similarity as the gradient perturbation input to attack the policy network, which leverages the entire policy distribution rather than relying on individual samples. We utilize the Bhattacharyya distance in DAPGD to measure policy similarity, enabling sensitive detection of subtle but critical differences between probability distributions. Our experiment results demonstrate that DAPGD achieves SOTA results compared to the baselines in three robot navigation tasks, achieving an average 22.03% higher reward drop compared to the best baseline.
Related papers
- Curriculum-Guided Antifragile Reinforcement Learning for Secure UAV Deconfliction under Observation-Space Attacks [6.367978467906828]
Reinforcement learning policies are vulnerable to adversarial attacks in the observation space.<n>We propose an antifragile RL framework designed to adapt against curriculum of incremental adversarial perturbations.<n>Results show that the antifragile policy consistently outperforms standard and robust RL baselines.
arXiv Detail & Related papers (2025-06-26T10:10:41Z) - Robust Policy Switching for Antifragile Reinforcement Learning for UAV Deconfliction in Adversarial Environments [6.956559003734227]
An unmanned aerial vehicles (UAVs) has been exposed to adversarial attacks that exploit vulnerabilities in reinforcement learning (RL)<n>This paper introduces an antifragile RL framework that enhances adaptability to broader distributional shifts.<n>It achieves superior performance, demonstrating shorter navigation path lengths and a higher rate of conflict-free navigation trajectories.
arXiv Detail & Related papers (2025-06-26T10:06:29Z) - Representation-based Reward Modeling for Efficient Safety Alignment of Large Language Model [84.00480999255628]
Reinforcement Learning algorithms for safety alignment of Large Language Models (LLMs) encounter the challenge of distribution shift.
Current approaches typically address this issue through online sampling from the target policy.
We propose a new framework that leverages the model's intrinsic safety judgment capability to extract reward signals.
arXiv Detail & Related papers (2025-03-13T06:40:34Z) - Diffusion Policy Policy Optimization [37.04382170999901]
Diffusion Policy Optimization, DPPO, is an algorithmic framework for fine-tuning diffusion-based policies.<n>DPO achieves the strongest overall performance and efficiency for fine-tuning in common benchmarks.<n>We show that DPPO takes advantage of unique synergies between RL fine-tuning and the diffusion parameterization.
arXiv Detail & Related papers (2024-09-01T02:47:50Z) - DiffPoGAN: Diffusion Policies with Generative Adversarial Networks for Offline Reinforcement Learning [22.323173093804897]
offline reinforcement learning can learn optimal policies from pre-collected offline datasets without interacting with the environment.
Recent works address this issue by employing generative adversarial networks (GANs)
Inspired by the diffusion, we propose a new offline RL method named Diffusion Policies with Generative Adversarial Networks (DiffPoGAN)
arXiv Detail & Related papers (2024-06-13T13:15:40Z) - CDSA: Conservative Denoising Score-based Algorithm for Offline Reinforcement Learning [25.071018803326254]
Distribution shift is a major obstacle in offline reinforcement learning.
Previous conservative offline RL algorithms struggle to generalize to unseen actions.
We propose to use the gradient fields of the dataset density generated from a pre-trained offline RL algorithm to adjust the original actions.
arXiv Detail & Related papers (2024-06-11T17:59:29Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality.<n>We propose a novel model-free diffusion-based online RL algorithm, Q-weighted Variational Policy Optimization (QVPO)<n>Specifically, we introduce the Q-weighted variational loss, which can be proved to be a tight lower bound of the policy objective in online RL under certain conditions.<n>We also develop an efficient behavior policy to enhance sample efficiency by reducing the variance of the diffusion policy during online interactions.
arXiv Detail & Related papers (2024-05-25T10:45:46Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
Adversarial attacks can introduce subtle perturbations to input data.
Recent attack methods can achieve a relatively high attack success rate (ASR)
We propose a Distribution-Aware LoRA-based Adversarial Attack (DALA) method.
arXiv Detail & Related papers (2023-11-14T23:43:47Z) - Off-Policy Evaluation for Large Action Spaces via Policy Convolution [60.6953713877886]
Policy Convolution family of estimators uses latent structure within actions to strategically convolve the logging and target policies.
Experiments on synthetic and benchmark datasets demonstrate remarkable mean squared error (MSE) improvements when using PC.
arXiv Detail & Related papers (2023-10-24T01:00:01Z) - Sample Dropout: A Simple yet Effective Variance Reduction Technique in
Deep Policy Optimization [18.627233013208834]
We show that the use of importance sampling could introduce high variance in the objective estimate.
We propose a technique called sample dropout to bound the estimation variance by dropping out samples when their ratio deviation is too high.
arXiv Detail & Related papers (2023-02-05T04:44:35Z) - Robust Deep Reinforcement Learning against Adversarial Perturbations on
State Observations [88.94162416324505]
A deep reinforcement learning (DRL) agent observes its states through observations, which may contain natural measurement errors or adversarial noises.
Since the observations deviate from the true states, they can mislead the agent into making suboptimal actions.
We show that naively applying existing techniques on improving robustness for classification tasks, like adversarial training, is ineffective for many RL tasks.
arXiv Detail & Related papers (2020-03-19T17:59:59Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.