Deep Learning-based Compression Detection for explainable Face Image Quality Assessment
- URL: http://arxiv.org/abs/2501.03619v1
- Date: Tue, 07 Jan 2025 08:36:46 GMT
- Title: Deep Learning-based Compression Detection for explainable Face Image Quality Assessment
- Authors: Laurin Jonientz, Johannes Merkle, Christian Rathgeb, Benjamin Tams, Georg Merz,
- Abstract summary: Quality components that are known to negatively impact the utility of face images include JPEG and JPEG 2000 compression artefacts.
Deep neural networks are trained to detect the compression artefacts in a face images.
In terms of detection accuracy, error rates of 2-3% are obtained for utilizing PSNR labels during training.
- Score: 2.7669616492193896
- License:
- Abstract: The assessment of face image quality is crucial to ensure reliable face recognition. In order to provide data subjects and operators with explainable and actionable feedback regarding captured face images, relevant quality components have to be measured. Quality components that are known to negatively impact the utility of face images include JPEG and JPEG 2000 compression artefacts, among others. Compression can result in a loss of important image details which may impair the recognition performance. In this work, deep neural networks are trained to detect the compression artefacts in a face images. For this purpose, artefact-free facial images are compressed with the JPEG and JPEG 2000 compression algorithms. Subsequently, the PSNR and SSIM metrics are employed to obtain training labels based on which neural networks are trained using a single network to detect JPEG and JPEG 2000 artefacts, respectively. The evaluation of the proposed method shows promising results: in terms of detection accuracy, error rates of 2-3% are obtained for utilizing PSNR labels during training. In addition, we show that error rates of different open-source and commercial face recognition systems can be significantly reduced by discarding face images exhibiting severe compression artefacts. To minimize resource consumption, EfficientNetV2 serves as basis for the presented algorithm, which is available as part of the OFIQ software.
Related papers
- Is JPEG AI going to change image forensics? [50.92778618091496]
We investigate the counter-forensic effects of the forthcoming JPEG AI standard based on neural image compression.
We show that an increase in false alarms impairs the performance of leading forensic detectors when analyzing genuine content processed through JPEG AI.
arXiv Detail & Related papers (2024-12-04T12:07:20Z) - Effectiveness of learning-based image codecs on fingerprint storage [19.292976022250684]
This study represents the first investigation about the adaptability of learning-based image codecs in the storage of fingerprint images.
At a fixed rate point, learned solutions considerably outperform previous fingerprint coding standards, like JPEG2000.
Results prove that the peculiarities of learned compression artifacts do not prevent automatic fingerprint identification.
arXiv Detail & Related papers (2024-09-27T13:23:17Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Effect of Lossy Compression Algorithms on Face Image Quality and
Recognition [12.554656658516262]
Lossy face image compression can degrade the image quality and the utility for the purpose of face recognition.
Four compression types are considered, namely JPEG, JPEG 2000, downscaled PNG, and notably the new JPEG XL format.
arXiv Detail & Related papers (2023-02-24T12:11:05Z) - Analysis of the Effect of Low-Overhead Lossy Image Compression on the
Performance of Visual Crowd Counting for Smart City Applications [78.55896581882595]
Lossy image compression techniques can reduce the quality of the images, leading to accuracy degradation.
In this paper, we analyze the effect of applying low-overhead lossy image compression methods on the accuracy of visual crowd counting.
arXiv Detail & Related papers (2022-07-20T19:20:03Z) - Effects of Image Compression on Face Image Manipulation Detection: A
Case Study on Facial Retouching [14.92708078957906]
The effects of image compression on face image manipulation detection are analyzed.
A case study on facial retouching detection under the influence of image compression is presented.
arXiv Detail & Related papers (2021-03-05T13:28:28Z) - Analyzing and Mitigating JPEG Compression Defects in Deep Learning [69.04777875711646]
We present a unified study of the effects of JPEG compression on a range of common tasks and datasets.
We show that there is a significant penalty on common performance metrics for high compression.
arXiv Detail & Related papers (2020-11-17T20:32:57Z) - Discernible Image Compression [124.08063151879173]
This paper aims to produce compressed images by pursuing both appearance and perceptual consistency.
Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images.
Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models.
arXiv Detail & Related papers (2020-02-17T07:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.