Effectiveness of learning-based image codecs on fingerprint storage
- URL: http://arxiv.org/abs/2409.18730v1
- Date: Fri, 27 Sep 2024 13:23:17 GMT
- Title: Effectiveness of learning-based image codecs on fingerprint storage
- Authors: Daniele Mari, Saverio Cavasin, Simone Milani, Mauro Conti,
- Abstract summary: This study represents the first investigation about the adaptability of learning-based image codecs in the storage of fingerprint images.
At a fixed rate point, learned solutions considerably outperform previous fingerprint coding standards, like JPEG2000.
Results prove that the peculiarities of learned compression artifacts do not prevent automatic fingerprint identification.
- Score: 19.292976022250684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of learning-based coding techniques and the development of learning-based image coding standards, such as JPEG-AI, point towards the adoption of such solutions in different fields, including the storage of biometric data, like fingerprints. However, the peculiar nature of learning-based compression artifacts poses several issues concerning their impact and effectiveness on extracting biometric features and landmarks, e.g., minutiae. This problem is utterly stressed by the fact that most models are trained on natural color images, whose characteristics are very different from usual biometric images, e.g, fingerprint or iris pictures. As a matter of fact, these issues are deemed to be accurately questioned and investigated, being such analysis still largely unexplored. This study represents the first investigation about the adaptability of learning-based image codecs in the storage of fingerprint images by measuring its impact on the extraction and characterization of minutiae. Experimental results show that at a fixed rate point, learned solutions considerably outperform previous fingerprint coding standards, like JPEG2000, both in terms of distortion and minutiae preservation. Indeed, experimental results prove that the peculiarities of learned compression artifacts do not prevent automatic fingerprint identification (since minutiae types and locations are not significantly altered), nor do compromise image quality for human visual inspection (as they gain in terms of BD rate and PSNR of 47.8% and +3.97dB respectively).
Related papers
- Trustworthy Compression? Impact of AI-based Codecs on Biometrics for Law Enforcement [6.014777261874645]
We investigate how AI compression impacts iris, fingerprint and soft-biometric images.
It turns out that iris recognition can be strongly affected, while fingerprint recognition is quite robust.
Loss of detail is qualitatively best seen in fabrics and tattoos images.
arXiv Detail & Related papers (2024-08-20T13:18:28Z) - A Robust Algorithm for Contactless Fingerprint Enhancement and Matching [7.820996917431323]
contactless fingerprint images exhibit four distinct characteristics.
They contain less noise, have fewer discontinuities in ridge patterns, and pose an interoperability problem.
We propose a novel contactless fingerprint identification solution that enhances the accuracy of minutiae detection.
arXiv Detail & Related papers (2024-08-18T10:01:42Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - RFDforFin: Robust Deep Forgery Detection for GAN-generated Fingerprint
Images [45.73061833269094]
We propose the first deep forgery detection approach for fingerprint images, which combines unique ridge features of fingerprint and generation artifacts of the GAN-generated images.
Our proposed approach is effective and robust with low complexities.
arXiv Detail & Related papers (2023-08-18T04:05:18Z) - A review of schemes for fingerprint image quality computation [66.32254395574994]
This paper reviews existing approaches for fingerprint image quality computation.
We also implement, test and compare a selection of them using the MCYT database including 9000 fingerprint images.
arXiv Detail & Related papers (2022-07-12T10:34:03Z) - On the Effects of Image Quality Degradation on Minutiae- and Ridge-Based
Automatic Fingerprint Recognition [61.81926091202142]
We study the performance of two fingerprint matchers based on minutiae and ridge information under varying image quality.
The ridge-based system is found to be more robust to image quality degradation than the minutiae-based system for a number of different image quality criteria.
arXiv Detail & Related papers (2022-07-12T10:28:36Z) - A Comparative Study of Fingerprint Image-Quality Estimation Methods [54.84936551037727]
Poor-quality images result in spurious and missing features, thus degrading the performance of the overall system.
In this work, we review existing approaches for fingerprint image-quality estimation.
We have also tested a selection of fingerprint image-quality estimation algorithms.
arXiv Detail & Related papers (2021-11-14T19:53:12Z) - Effects of Image Compression on Face Image Manipulation Detection: A
Case Study on Facial Retouching [14.92708078957906]
The effects of image compression on face image manipulation detection are analyzed.
A case study on facial retouching detection under the influence of image compression is presented.
arXiv Detail & Related papers (2021-03-05T13:28:28Z) - Analyzing and Mitigating JPEG Compression Defects in Deep Learning [69.04777875711646]
We present a unified study of the effects of JPEG compression on a range of common tasks and datasets.
We show that there is a significant penalty on common performance metrics for high compression.
arXiv Detail & Related papers (2020-11-17T20:32:57Z) - Discernible Image Compression [124.08063151879173]
This paper aims to produce compressed images by pursuing both appearance and perceptual consistency.
Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images.
Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models.
arXiv Detail & Related papers (2020-02-17T07:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.