CFFormer: Cross CNN-Transformer Channel Attention and Spatial Feature Fusion for Improved Segmentation of Heterogeneous Medical Images
- URL: http://arxiv.org/abs/2501.03629v2
- Date: Wed, 16 Jul 2025 09:02:47 GMT
- Title: CFFormer: Cross CNN-Transformer Channel Attention and Spatial Feature Fusion for Improved Segmentation of Heterogeneous Medical Images
- Authors: Jiaxuan Li, Qing Xu, Xiangjian He, Ziyu Liu, Daokun Zhang, Ruili Wang, Rong Qu, Guoping Qiu,
- Abstract summary: Medical image segmentation plays an important role in computer-aided diagnosis.<n>Due to limitations of medical imaging devices, medical images exhibit significant heterogeneity, posing challenges for segmentation.<n>We propose a hybrid CNN-Transformer model,called CFFormer, which leverages effective channel feature extraction.
- Score: 29.68616115427831
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation plays an important role in computer-aided diagnosis. Existing methods mainly utilize spatial attention to highlight the region of interest. However, due to limitations of medical imaging devices, medical images exhibit significant heterogeneity, posing challenges for segmentation. Ultrasound images, for instance, often suffer from speckle noise, low resolution, and poor contrast between target tissues and background, which may lead to inaccurate boundary delineation. To address these challenges caused by heterogeneous image quality, we propose a hybrid CNN-Transformer model,called CFFormer, which leverages effective channel feature extraction to enhance the model' s ability to accurately identify tissue regions by capturing rich contextual information. The proposed architecture contains two key components: the Cross Feature Channel Attention (CFCA) module and the X-Spatial Feature Fusion (XFF) module. The model incorporates dual encoders, with the CNN encoder focusing on capturing local features and the Transformer encoder modeling global features. The CFCA module filters and facilitates interactions between the channel features from the two encoders, while the XFF module effectively reduces the significant semantic information differences in spatial features, enabling a smooth and cohesive spatial feature fusion. We evaluate our model across eight datasets covering five modalities to test its generalization capability. Experimental results demonstrate that our model outperforms current state-of-the-art methods and maintains accurate tissue region segmentation across heterogeneous medical image datasets. The code is available at https://github.com/JiaxuanFelix/CFFormer.
Related papers
- InceptionMamba: Efficient Multi-Stage Feature Enhancement with Selective State Space Model for Microscopic Medical Image Segmentation [15.666926528144202]
We propose an efficient framework for the segmentation task, named InceptionMamba, which encodes multi-stage rich features.<n>We exploit semantic cues to capture both low-frequency and high-frequency regions to enrich the multi-stage features.<n>Our model achieves state-of-the-art performance on two challenging microscopic segmentation datasets.
arXiv Detail & Related papers (2025-06-13T20:25:12Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.<n>Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.<n>Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
High-resolution images are preferable in medical imaging domain as they significantly improve the diagnostic capability of the underlying method.
Most of the existing deep learning-based techniques for medical image segmentation are optimized for input images having small spatial dimensions and perform poorly on high-resolution images.
We propose a parallel-in-branch architecture called TransResNet, which incorporates Transformer and CNN in a parallel manner to extract features from multi-resolution images independently.
arXiv Detail & Related papers (2024-10-01T18:22:34Z) - AFFSegNet: Adaptive Feature Fusion Segmentation Network for Microtumors and Multi-Organ Segmentation [31.97835089989928]
Medical image segmentation is a crucial task in computer vision, supporting clinicians in diagnosis, treatment planning, and disease monitoring.<n>We propose the Adaptive Semantic Network (ASSNet), a transformer architecture that effectively integrates local and global features for precise medical image segmentation.<n>Tests on diverse medical image segmentation tasks, including multi-organ, liver tumor, and bladder tumor segmentation, demonstrate that ASSNet achieves state-of-the-art results.
arXiv Detail & Related papers (2024-09-12T06:25:44Z) - CFPFormer: Feature-pyramid like Transformer Decoder for Segmentation and Detection [1.837431956557716]
Feature pyramids have been widely adopted in convolutional neural networks (CNNs) and transformers for tasks like medical image segmentation and object detection.
We propose a novel decoder block that integrates feature pyramids and transformers.
Our model achieves superior performance in detecting small objects compared to existing methods.
arXiv Detail & Related papers (2024-04-23T18:46:07Z) - BEFUnet: A Hybrid CNN-Transformer Architecture for Precise Medical Image
Segmentation [0.0]
This paper proposes an innovative U-shaped network called BEFUnet, which enhances the fusion of body and edge information for precise medical image segmentation.
The BEFUnet comprises three main modules, including a novel Local Cross-Attention Feature (LCAF) fusion module, a novel Double-Level Fusion (DLF) module, and dual-branch encoder.
The LCAF module efficiently fuses edge and body features by selectively performing local cross-attention on features that are spatially close between the two modalities.
arXiv Detail & Related papers (2024-02-13T21:03:36Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Dual Aggregation Transformer for Image Super-Resolution [92.41781921611646]
We propose a novel Transformer model, Dual Aggregation Transformer, for image SR.
Our DAT aggregates features across spatial and channel dimensions, in the inter-block and intra-block dual manner.
Our experiments show that our DAT surpasses current methods.
arXiv Detail & Related papers (2023-08-07T07:39:39Z) - MCPA: Multi-scale Cross Perceptron Attention Network for 2D Medical
Image Segmentation [7.720152925974362]
We propose a 2D medical image segmentation model called Multi-scale Cross Perceptron Attention Network (MCPA)
The MCPA consists of three main components: an encoder, a decoder, and a Cross Perceptron.
We evaluate our proposed MCPA model on several publicly available medical image datasets from different tasks and devices.
arXiv Detail & Related papers (2023-07-27T02:18:12Z) - Video-FocalNets: Spatio-Temporal Focal Modulation for Video Action
Recognition [112.66832145320434]
Video-FocalNet is an effective and efficient architecture for video recognition that models both local global contexts.
Video-FocalNet is based on a-temporal focal modulation architecture that reverses the interaction and aggregation steps of self-attention.
We show that Video-FocalNets perform favorably well against state-of-the-art transformer-based models for video recognition on five large-scale datasets.
arXiv Detail & Related papers (2023-07-13T17:59:33Z) - An Efficient Speech Separation Network Based on Recurrent Fusion Dilated
Convolution and Channel Attention [0.2538209532048866]
We present an efficient speech separation neural network, ARFDCN, which combines dilated convolutions, multi-scale fusion (MSF), and channel attention.
Experimental results indicate that the model achieves a decent balance between performance and computational efficiency.
arXiv Detail & Related papers (2023-06-09T13:30:27Z) - Efficient Encoder-Decoder and Dual-Path Conformer for Comprehensive
Feature Learning in Speech Enhancement [0.2538209532048866]
This paper proposes a time-frequency (T-F) domain speech enhancement network (DPCFCS-Net)
It incorporates improved densely connected blocks, dual-path modules, convolution-augmented transformers (conformers), channel attention, and spatial attention.
Compared with previous models, our proposed model has a more efficient encoder-decoder and can learn comprehensive features.
arXiv Detail & Related papers (2023-06-09T12:52:01Z) - Efficient Scopeformer: Towards Scalable and Rich Feature Extraction for
Intracranial Hemorrhage Detection [0.7734726150561088]
"Scopeformer" is a novel multi-CNN-ViT model for intracranial hemorrhage classification in computed tomography (CT) images.
We propose effective feature projection methods to reduce redundancies among CNN-generated features and to control the input size of ViTs.
Experiments with various Scopeformer models show that the model performance is proportional to the number of convolutional blocks employed in the feature extractor.
arXiv Detail & Related papers (2023-02-01T03:51:27Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - End-to-end Transformer for Compressed Video Quality Enhancement [21.967066471073462]
We propose a transformer-based compressed video quality enhancement (TVQE) method, consisting of Swin-AutoEncoder based Spatio-Temporal feature Fusion (SSTF) module and Channel-wise Attention based Quality Enhancement (CAQE) module.
Our proposed method outperforms existing ones in terms of both inference speed and GPU consumption.
arXiv Detail & Related papers (2022-10-25T08:12:05Z) - Bridging the Gap Between Vision Transformers and Convolutional Neural
Networks on Small Datasets [91.25055890980084]
There still remains an extreme performance gap between Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) when training from scratch on small datasets.
We propose Dynamic Hybrid Vision Transformer (DHVT) as the solution to enhance the two inductive biases.
Our DHVT achieves a series of state-of-the-art performance with a lightweight model, 85.68% on CIFAR-100 with 22.8M parameters, 82.3% on ImageNet-1K with 24.0M parameters.
arXiv Detail & Related papers (2022-10-12T06:54:39Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - Crosslink-Net: Double-branch Encoder Segmentation Network via Fusing
Vertical and Horizontal Convolutions [58.71117402626524]
We present a novel double-branch encoder architecture for medical image segmentation.
Our architecture is inspired by two observations: 1) Since the discrimination of features learned via square convolutional kernels needs to be further improved, we propose to utilize non-square vertical and horizontal convolutional kernels.
The experiments validate the effectiveness of our model on four datasets.
arXiv Detail & Related papers (2021-07-24T02:58:32Z) - Global Filter Networks for Image Classification [90.81352483076323]
We present a conceptually simple yet computationally efficient architecture that learns long-term spatial dependencies in the frequency domain with log-linear complexity.
Our results demonstrate that GFNet can be a very competitive alternative to transformer-style models and CNNs in efficiency, generalization ability and robustness.
arXiv Detail & Related papers (2021-07-01T17:58:16Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - MVFNet: Multi-View Fusion Network for Efficient Video Recognition [79.92736306354576]
We introduce a multi-view fusion (MVF) module to exploit video complexity using separable convolution for efficiency.
MVFNet can be thought of as a generalized video modeling framework.
arXiv Detail & Related papers (2020-12-13T06:34:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.