Dual Aggregation Transformer for Image Super-Resolution
- URL: http://arxiv.org/abs/2308.03364v2
- Date: Fri, 11 Aug 2023 05:21:15 GMT
- Title: Dual Aggregation Transformer for Image Super-Resolution
- Authors: Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, Xiaokang Yang, Fisher
Yu
- Abstract summary: We propose a novel Transformer model, Dual Aggregation Transformer, for image SR.
Our DAT aggregates features across spatial and channel dimensions, in the inter-block and intra-block dual manner.
Our experiments show that our DAT surpasses current methods.
- Score: 92.41781921611646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer has recently gained considerable popularity in low-level vision
tasks, including image super-resolution (SR). These networks utilize
self-attention along different dimensions, spatial or channel, and achieve
impressive performance. This inspires us to combine the two dimensions in
Transformer for a more powerful representation capability. Based on the above
idea, we propose a novel Transformer model, Dual Aggregation Transformer (DAT),
for image SR. Our DAT aggregates features across spatial and channel
dimensions, in the inter-block and intra-block dual manner. Specifically, we
alternately apply spatial and channel self-attention in consecutive Transformer
blocks. The alternate strategy enables DAT to capture the global context and
realize inter-block feature aggregation. Furthermore, we propose the adaptive
interaction module (AIM) and the spatial-gate feed-forward network (SGFN) to
achieve intra-block feature aggregation. AIM complements two self-attention
mechanisms from corresponding dimensions. Meanwhile, SGFN introduces additional
non-linear spatial information in the feed-forward network. Extensive
experiments show that our DAT surpasses current methods. Code and models are
obtainable at https://github.com/zhengchen1999/DAT.
Related papers
- A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
Existing deraining Transformers employ self-attention mechanisms with fixed-range windows or along channel dimensions.
We introduce a novel dual-branch hybrid Transformer-Mamba network, denoted as TransMamba, aimed at effectively capturing long-range rain-related dependencies.
arXiv Detail & Related papers (2024-08-31T10:03:19Z) - CT-MVSNet: Efficient Multi-View Stereo with Cross-scale Transformer [8.962657021133925]
Cross-scale transformer (CT) processes feature representations at different stages without additional computation.
We introduce an adaptive matching-aware transformer (AMT) that employs different interactive attention combinations at multiple scales.
We also present a dual-feature guided aggregation (DFGA) that embeds the coarse global semantic information into the finer cost volume construction.
arXiv Detail & Related papers (2023-12-14T01:33:18Z) - Dual-Stream Attention Transformers for Sewer Defect Classification [2.5499055723658097]
We propose a dual-stream vision transformer architecture that processes RGB and optical flow inputs for efficient sewer defect classification.
Our key idea is to use self-attention regularization to harness the complementary strengths of the RGB and motion streams.
By leveraging motion cues through a self-attention regularizer, we align and enhance RGB attention maps, enabling the network to concentrate on pertinent input regions.
arXiv Detail & Related papers (2023-11-07T02:31:51Z) - 2-D SSM: A General Spatial Layer for Visual Transformers [79.4957965474334]
A central objective in computer vision is to design models with appropriate 2-D inductive bias.
We leverage an expressive variation of the multidimensional State Space Model.
Our approach introduces efficient parameterization, accelerated computation, and a suitable normalization scheme.
arXiv Detail & Related papers (2023-06-11T09:41:37Z) - Hierarchical Cross-modal Transformer for RGB-D Salient Object Detection [6.385624548310884]
We propose the Hierarchical Cross-modal Transformer (HCT), a new multi-modal transformer, to tackle this problem.
Unlike previous multi-modal transformers that directly connecting all patches from two modalities, we explore the cross-modal complementarity hierarchically.
We present a Feature Pyramid module for Transformer (FPT) to boost informative cross-scale integration as well as a consistency-complementarity module to disentangle the multi-modal integration path.
arXiv Detail & Related papers (2023-02-16T03:23:23Z) - Activating More Pixels in Image Super-Resolution Transformer [53.87533738125943]
Transformer-based methods have shown impressive performance in low-level vision tasks, such as image super-resolution.
We propose a novel Hybrid Attention Transformer (HAT) to activate more input pixels for better reconstruction.
Our overall method significantly outperforms the state-of-the-art methods by more than 1dB.
arXiv Detail & Related papers (2022-05-09T17:36:58Z) - SwinNet: Swin Transformer drives edge-aware RGB-D and RGB-T salient
object detection [12.126413875108993]
We propose a cross-modality fusion model SwinNet for RGB-D and RGB-T salient object detection.
The proposed model outperforms the state-of-the-art models on RGB-D and RGB-T datasets.
arXiv Detail & Related papers (2022-04-12T07:37:39Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Transformer-based Network for RGB-D Saliency Detection [82.6665619584628]
Key to RGB-D saliency detection is to fully mine and fuse information at multiple scales across the two modalities.
We show that transformer is a uniform operation which presents great efficacy in both feature fusion and feature enhancement.
Our proposed network performs favorably against state-of-the-art RGB-D saliency detection methods.
arXiv Detail & Related papers (2021-12-01T15:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.