論文の概要: Exploring Molecule Generation Using Latent Space Graph Diffusion
- arxiv url: http://arxiv.org/abs/2501.03696v1
- Date: Tue, 07 Jan 2025 10:54:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:50:22.909764
- Title: Exploring Molecule Generation Using Latent Space Graph Diffusion
- Title(参考訳): 潜時空間グラフ拡散を用いた分子生成の探索
- Authors: Prashanth Pombala, Gerrit Grossmann, Verena Wolf,
- Abstract要約: 分子グラフの生成は、その離散的な性質と競合する目的のために難しい課題である。
分子グラフの場合、拡散バックボーンとしてのグラフニューラルネットワーク(GNN)は印象的な結果を得た。
自己エンコーダを介して低次元空間に拡散する潜在空間拡散は計算効率を実証している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Generating molecular graphs is a challenging task due to their discrete nature and the competitive objectives involved. Diffusion models have emerged as SOTA approaches in data generation across various modalities. For molecular graphs, graph neural networks (GNNs) as a diffusion backbone have achieved impressive results. Latent space diffusion, where diffusion occurs in a low-dimensional space via an autoencoder, has demonstrated computational efficiency. However, the literature on latent space diffusion for molecular graphs is scarce, and no commonly accepted best practices exist. In this work, we explore different approaches and hyperparameters, contrasting generative flow models (denoising diffusion, flow matching, heat dissipation) and architectures (GNNs and E(3)-equivariant GNNs). Our experiments reveal a high sensitivity to the choice of approach and design decisions. Code is made available at github.com/Prashanth-Pombala/Molecule-Generation-using-Latent-Space-Graph-Diffusion.
- Abstract(参考訳): 分子グラフの生成は、その離散的な性質と競合する目的のために難しい課題である。
拡散モデルは、様々なモードにわたるデータ生成においてSOTAアプローチとして出現している。
分子グラフの場合、拡散バックボーンとしてのグラフニューラルネットワーク(GNN)は印象的な結果を得た。
自己エンコーダを介して低次元空間に拡散する潜在空間拡散は計算効率を実証している。
しかし、分子グラフの潜在空間拡散に関する文献は乏しく、一般的に受け入れられるベストプラクティスは存在しない。
本研究では, 生成フローモデル (拡散, 流れマッチング, 熱散逸) とアーキテクチャ (GNN, E(3)-同変GNN) を対比して, 異なるアプローチとハイパーパラメータについて検討する。
われわれの実験では、アプローチの選択と設計の決定に高い感度が示される。
コードはgithub.com/Prashanth-Pombala/Molecule-Generation-using-Latent-Space-Graph-Diffusionで公開されている。
関連論文リスト
- Bridging the Gap between Learning and Inference for Diffusion-Based Molecule Generation [18.936142688346816]
GapDiffは、トレーニングと推論の間のデータ分散の相違を緩和するトレーニングフレームワークである。
我々は,CrossDocked 2020データセット上で3次元分子生成モデルを用いて実験を行った。
論文 参考訳(メタデータ) (2024-11-08T10:53:39Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
拡散モデルは、画像、分子、DNA、RNA、タンパク質配列の自然なデザイン空間を捉えるのに優れている。
これらの設計空間の自然性を保ちながら、下流の報酬関数を最適化することを目指している。
提案アルゴリズムは,中間雑音状態が将来高い報酬をもたらすことの先駆けとして,ソフトバリュー関数を統合する。
論文 参考訳(メタデータ) (2024-08-15T16:47:59Z) - Hyperbolic Geometric Latent Diffusion Model for Graph Generation [27.567428462212455]
拡散モデルはコンピュータビジョンに多大な貢献をしており、最近、グラフ生成への応用に関するコミュニティの関心が高まっている。
本稿では,新しい幾何学的遅延拡散フレームワークHypDiffを提案する。
具体的には、まず、双曲幾何学に基づく解釈可能性測度を持つ幾何学的潜在空間を確立し、グラフの異方性潜在拡散過程を定義する。
そこで我々は, 放射状および角状両方の幾何学的性質に制約された幾何学的潜在拡散過程を提案し, 生成グラフにおける原位相特性の保存を確実にする。
論文 参考訳(メタデータ) (2024-05-06T06:28:44Z) - Diffusion-based Graph Generative Methods [51.04666253001781]
拡散に基づくグラフ生成法について,系統的,包括的に検討した。
まず,拡散モデル,スコアベース生成モデル,微分方程式の3つの主流パラダイムについて概説する。
最後に,現在の研究の限界と今後の探査の方向性を指摘する。
論文 参考訳(メタデータ) (2024-01-28T10:09:05Z) - Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
グラフ拡散方程式は、様々なグラフトポロジーの存在下で、どのように外挿して一般化するかを示す。
本稿では,新たなグラフエンコーダのバックボーンであるAdvective Diffusion Transformer (ADiT)を提案する。
論文 参考訳(メタデータ) (2023-10-10T08:40:47Z) - Gramian Angular Fields for leveraging pretrained computer vision models
with anomalous diffusion trajectories [0.9012198585960443]
拡散軌跡を扱うための新しいデータ駆動手法を提案する。
この方法はグラミアン角場(GAF)を用いて1次元軌跡を画像として符号化する。
我々は、ResNetとMobileNetという、よく訓練された2つのコンピュータビジョンモデルを利用して、基礎となる拡散体制を特徴づける。
論文 参考訳(メタデータ) (2023-09-02T17:22:45Z) - Generative Diffusion Models on Graphs: Methods and Applications [50.44334458963234]
拡散モデルは、新しい生成パラダイムとして、様々な画像生成タスクにおいて顕著な成功を収めた。
グラフ生成は多くの実世界のアプリケーションを持つグラフ上で重要な計算タスクである。
論文 参考訳(メタデータ) (2023-02-06T06:58:17Z) - Conditional Diffusion Based on Discrete Graph Structures for Molecular
Graph Generation [32.66694406638287]
分子グラフ生成のための離散グラフ構造(CDGS)に基づく条件拡散モデルを提案する。
具体的には、微分方程式(SDE)を用いて、グラフ構造と固有の特徴の両方に対して前方グラフ拡散過程を構築する。
本稿では,中間グラフ状態からグローバルコンテキストと局所ノードエッジ依存性を抽出する,特殊なハイブリッドグラフノイズ予測モデルを提案する。
論文 参考訳(メタデータ) (2023-01-01T15:24:15Z) - Fast Graph Generative Model via Spectral Diffusion [38.31052833073743]
空間全体におけるフルランク拡散SDEの実行は、学習グラフトポロジ生成からの拡散モデルを妨げると論じる。
グラフスペクトル空間上の低ランク拡散SDEによって駆動される効率的なグラフスペクトル拡散モデル(GSDM)を提案する。
論文 参考訳(メタデータ) (2022-11-16T12:56:32Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
関係領域で独立に訓練された2つの拡散モデルから共通潜時空間が現れることを示す。
テキスト・画像拡散モデルにCycleDiffusionを適用することで、大規模なテキスト・画像拡散モデルがゼロショット画像・画像拡散エディタとして使用できることを示す。
論文 参考訳(メタデータ) (2022-10-11T15:53:52Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。