論文の概要: Detecting Neurocognitive Disorders through Analyses of Topic Evolution and Cross-modal Consistency in Visual-Stimulated Narratives
- arxiv url: http://arxiv.org/abs/2501.03727v1
- Date: Tue, 07 Jan 2025 12:16:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:46:14.745090
- Title: Detecting Neurocognitive Disorders through Analyses of Topic Evolution and Cross-modal Consistency in Visual-Stimulated Narratives
- Title(参考訳): 視覚刺激物語におけるトピック進化と横断的一貫性の分析による神経認知障害の検出
- Authors: Jinchao Li, Yuejiao Wang, Junan Li, Jiawen Kang, Bo Zheng, Simon Wong, Brian Mak, Helene Fung, Jean Woo, Man-Wai Mak, Timothy Kwok, Vincent Mok, Xianmin Gong, Xixin Wu, Xunying Liu, Patrick Wong, Helen Meng,
- Abstract要約: 神経認知障害(NCD)の早期発見は、時間的介入と疾患管理に不可欠である。
伝統的な物語分析は、しばしば単語の使用法や構文など、ミクロ構造における局所的な指標に焦点を当てる。
本稿では,話題の変化,時間的ダイナミクス,物語の時間的コヒーレンスを分析することによって,特定の認知的・言語的課題を解明することを提案する。
- 参考スコア(独自算出の注目度): 84.03001845263
- License:
- Abstract: Early detection of neurocognitive disorders (NCDs) is crucial for timely intervention and disease management. Speech analysis offers a non-intrusive and scalable screening method, particularly through narrative tasks in neuropsychological assessment tools. Traditional narrative analysis often focuses on local indicators in microstructure, such as word usage and syntax. While these features provide insights into language production abilities, they often fail to capture global narrative patterns, or microstructures. Macrostructures include coherence, thematic organization, and logical progressions, reflecting essential cognitive skills potentially critical for recognizing NCDs. Addressing this gap, we propose to investigate specific cognitive and linguistic challenges by analyzing topical shifts, temporal dynamics, and the coherence of narratives over time, aiming to reveal cognitive deficits by identifying narrative impairments, and exploring their impact on communication and cognition. The investigation is based on the CU-MARVEL Rabbit Story corpus, which comprises recordings of a story-telling task from 758 older adults. We developed two approaches: the Dynamic Topic Models (DTM)-based temporal analysis to examine the evolution of topics over time, and the Text-Image Temporal Alignment Network (TITAN) to evaluate the coherence between spoken narratives and visual stimuli. DTM-based approach validated the effectiveness of dynamic topic consistency as a macrostructural metric (F1=0.61, AUC=0.78). The TITAN approach achieved the highest performance (F1=0.72, AUC=0.81), surpassing established microstructural and macrostructural feature sets. Cross-comparison and regression tasks further demonstrated the effectiveness of proposed dynamic macrostructural modeling approaches for NCD detection.
- Abstract(参考訳): 神経認知障害(NCD)の早期発見は、時間的介入と疾患管理に不可欠である。
音声分析は、非侵襲的でスケーラブルなスクリーニング方法を提供し、特に神経心理学的評価ツールの物語的タスクを通してである。
伝統的な物語分析は、しばしば単語の使用法や構文など、ミクロ構造における局所的な指標に焦点を当てる。
これらの機能は、言語生産能力に関する洞察を提供するが、グローバルな物語パターンやミクロ構造を捉えるのに失敗することが多い。
マクロ構造にはコヒーレンス、セマティックな組織、論理的な進歩が含まれており、NCDを認識する上で重要な認知スキルを反映している。
このギャップに対処するために, 話題の変化, 時間的ダイナミクス, 物語のコヒーレンスを時間とともに分析し, 物語障害を識別して認知障害を明らかにすること, コミュニケーションや認知への影響を探ることにより, 特定の認知的・言語的課題を解明することを提案する。
調査はCU-MARVEL Rabbit Story corpusに基づく。
本研究では,動的トピックモデル(DTM)に基づく時間的分析法と,音声物語と視覚刺激のコヒーレンスを評価するためのテキスト画像時間アライメントネットワーク(TITAN)の2つの手法を開発した。
DTMに基づくアプローチは、マクロ構造計量としての動的トピック一貫性の有効性を検証する(F1=0.61, AUC=0.78)。
TITANアプローチは、確立されたミクロ構造およびマクロ構造的特徴セットを超越した最高性能(F1=0.72, AUC=0.81)を達成した。
さらに,NCD検出のための動的マクロ構造モデリング手法の有効性を示した。
関連論文リスト
- Neuron: Learning Context-Aware Evolving Representations for Zero-Shot Skeleton Action Recognition [64.56321246196859]
本稿では,dUalスケルトン・セマンティック・セマンティック・セマンティック・セマンティック・シンジスティック・フレームワークを提案する。
まず、時空間進化型マイクロプロトタイプを構築し、動的コンテキスト認識側情報を統合する。
本研究では,空間的圧縮と時間的記憶機構を導入し,空間的時間的マイクロプロトタイプの成長を導く。
論文 参考訳(メタデータ) (2024-11-18T05:16:11Z) - Unlocking Structured Thinking in Language Models with Cognitive Prompting [0.0]
大規模言語モデル(LLM)における問題解決を導く新しいアプローチとして認知的プロンプトを提案する。
本稿では,認知操作の決定論的シーケンス,自己適応型,ハイブリッド型という3つの変種を紹介する。
LLaMA, Gemma2, Qwenの各モデルの算術的推論ベンチマークGSM8Kにおける実験により、認知的プロンプトは標準的な質問応答に比べて性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2024-10-03T19:53:47Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
ほとんどのrs-fMRI研究は、関心のある脳領域にまたがる単一の静的機能接続行列を計算している。
これらのアプローチは、脳のダイナミクスを単純化し、目の前のゴールを適切に考慮していないリスクがある。
本稿では,時系列から直接ゴール固有の機能的接続行列を学習する,解釈可能な新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-19T23:35:06Z) - Multi-task Collaborative Pre-training and Individual-adaptive-tokens
Fine-tuning: A Unified Framework for Brain Representation Learning [3.1453938549636185]
協調的事前学習と個別学習を組み合わせた統合フレームワークを提案する。
提案したMCIATはADHD-200データセット上で最先端の診断性能を実現する。
論文 参考訳(メタデータ) (2023-06-20T08:38:17Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - M-SENSE: Modeling Narrative Structure in Short Personal Narratives Using
Protagonist's Mental Representations [14.64546899992196]
本研究では,登場人物の心的状態の推測を解析し,物語構造の顕著な要素を自動的に検出するタスクを提案する。
本稿では,物語構造の主要な要素,特にクライマックスと解像度のマニュアルアノテーションを含む,短い個人物語のSTORIESデータセットを紹介する。
我々のモデルは、クライマックスと解像度を識別するタスクにおいて、大幅な改善を達成できる。
論文 参考訳(メタデータ) (2023-02-18T20:48:02Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
クラウドソーシングを通じて、CausalDialogueという新しいデータセットをコンパイルし、拡張しました。
このデータセットは、有向非巡回グラフ(DAG)構造内に複数の因果効果対を含む。
ニューラル会話モデルの訓練における発話レベルにおける因果性の影響を高めるために,Exponential Average Treatment Effect (ExMATE) と呼ばれる因果性強化手法を提案する。
論文 参考訳(メタデータ) (2022-12-20T18:31:50Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。