Detecting Neurocognitive Disorders through Analyses of Topic Evolution and Cross-modal Consistency in Visual-Stimulated Narratives
- URL: http://arxiv.org/abs/2501.03727v1
- Date: Tue, 07 Jan 2025 12:16:26 GMT
- Title: Detecting Neurocognitive Disorders through Analyses of Topic Evolution and Cross-modal Consistency in Visual-Stimulated Narratives
- Authors: Jinchao Li, Yuejiao Wang, Junan Li, Jiawen Kang, Bo Zheng, Simon Wong, Brian Mak, Helene Fung, Jean Woo, Man-Wai Mak, Timothy Kwok, Vincent Mok, Xianmin Gong, Xixin Wu, Xunying Liu, Patrick Wong, Helen Meng,
- Abstract summary: Early detection of neurocognitive disorders (NCDs) is crucial for timely intervention and disease management.
Traditional narrative analysis often focuses on local indicators in microstructure, such as word usage and syntax.
We propose to investigate specific cognitive and linguistic challenges by analyzing topical shifts, temporal dynamics, and the coherence of narratives over time.
- Score: 84.03001845263
- License:
- Abstract: Early detection of neurocognitive disorders (NCDs) is crucial for timely intervention and disease management. Speech analysis offers a non-intrusive and scalable screening method, particularly through narrative tasks in neuropsychological assessment tools. Traditional narrative analysis often focuses on local indicators in microstructure, such as word usage and syntax. While these features provide insights into language production abilities, they often fail to capture global narrative patterns, or microstructures. Macrostructures include coherence, thematic organization, and logical progressions, reflecting essential cognitive skills potentially critical for recognizing NCDs. Addressing this gap, we propose to investigate specific cognitive and linguistic challenges by analyzing topical shifts, temporal dynamics, and the coherence of narratives over time, aiming to reveal cognitive deficits by identifying narrative impairments, and exploring their impact on communication and cognition. The investigation is based on the CU-MARVEL Rabbit Story corpus, which comprises recordings of a story-telling task from 758 older adults. We developed two approaches: the Dynamic Topic Models (DTM)-based temporal analysis to examine the evolution of topics over time, and the Text-Image Temporal Alignment Network (TITAN) to evaluate the coherence between spoken narratives and visual stimuli. DTM-based approach validated the effectiveness of dynamic topic consistency as a macrostructural metric (F1=0.61, AUC=0.78). The TITAN approach achieved the highest performance (F1=0.72, AUC=0.81), surpassing established microstructural and macrostructural feature sets. Cross-comparison and regression tasks further demonstrated the effectiveness of proposed dynamic macrostructural modeling approaches for NCD detection.
Related papers
- Unlocking Multimodal Integration in EHRs: A Prompt Learning Framework for Language and Time Series Fusion [27.70300880284899]
Large language models (LLMs) have shown remarkable performance in vision-language tasks, but their application in the medical field remains underexplored.
We introduce ProMedTS, a novel self-supervised multimodal framework that employs prompt-guided learning to unify data types.
We evaluate ProMedTS on disease diagnosis tasks using real-world datasets, and the results demonstrate that our method consistently outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2025-02-19T07:56:48Z) - Neuron: Learning Context-Aware Evolving Representations for Zero-Shot Skeleton Action Recognition [64.56321246196859]
We propose a novel dyNamically Evolving dUal skeleton-semantic syneRgistic framework.
We first construct the spatial-temporal evolving micro-prototypes and integrate dynamic context-aware side information.
We introduce the spatial compression and temporal memory mechanisms to guide the growth of spatial-temporal micro-prototypes.
arXiv Detail & Related papers (2024-11-18T05:16:11Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - Multi-task Collaborative Pre-training and Individual-adaptive-tokens
Fine-tuning: A Unified Framework for Brain Representation Learning [3.1453938549636185]
We propose a unified framework that combines Collaborative pre-training and Individual--Tokens fine-tuning.
The proposed MCIAT achieves state-of-the-art diagnosis performance on the ADHD-200 dataset.
arXiv Detail & Related papers (2023-06-20T08:38:17Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - M-SENSE: Modeling Narrative Structure in Short Personal Narratives Using
Protagonist's Mental Representations [14.64546899992196]
We propose the task of automatically detecting prominent elements of the narrative structure by analyzing the role of characters' inferred mental state.
We introduce a STORIES dataset of short personal narratives containing manual annotations of key elements of narrative structure, specifically climax and resolution.
Our model is able to achieve significant improvements in the task of identifying climax and resolution.
arXiv Detail & Related papers (2023-02-18T20:48:02Z) - An Empirical Study: Extensive Deep Temporal Point Process [61.14164208094238]
We first review recent research emphasis and difficulties in modeling asynchronous event sequences with deep temporal point process.
We propose a Granger causality discovery framework for exploiting the relations among multi-types of events.
arXiv Detail & Related papers (2021-10-19T10:15:00Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.