The Choice of Normalization Influences Shrinkage in Regularized Regression
- URL: http://arxiv.org/abs/2501.03821v2
- Date: Tue, 21 Jan 2025 18:42:42 GMT
- Title: The Choice of Normalization Influences Shrinkage in Regularized Regression
- Authors: Johan Larsson, Jonas Wallin,
- Abstract summary: We study normalization in the context of lasso, ridge, and elastic net regression.
We show that the class of binary features directly influences the regression coefficients.
We also tackle mixes of binary and normal features as well as interactions and provide some initial results.
- Score: 7.823248584589426
- License:
- Abstract: Regularized models are often sensitive to the scales of the features in the data and it has therefore become standard practice to normalize (center and scale) the features before fitting the model. But there are many different ways to normalize the features and the choice may have dramatic effects on the resulting model. In spite of this, there has so far been no research on this topic. In this paper, we begin to bridge this knowledge gap by studying normalization in the context of lasso, ridge, and elastic net regression. We focus on normal and binary features and show that the class balances of binary features directly influences the regression coefficients and that this effect depends on the combination of normalization and regularization methods used. We demonstrate that this effect can be mitigated by scaling binary features with their variance in the case of the lasso and standard deviation in the case of ridge regression, but that this comes at the cost of increased variance. For the elastic net, we show that scaling the penalty weights, rather than the features, can achieve the same effect. Finally, we also tackle mixes of binary and normal features as well as interactions and provide some initial results on how to normalize features in these cases.
Related papers
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - The Implicit Bias of Batch Normalization in Linear Models and Two-layer
Linear Convolutional Neural Networks [117.93273337740442]
We show that gradient descent converges to a uniform margin classifier on the training data with an $exp(-Omega(log2 t))$ convergence rate.
We also show that batch normalization has an implicit bias towards a patch-wise uniform margin.
arXiv Detail & Related papers (2023-06-20T16:58:00Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
Generalization captures a model's ability to classify unseen data.
Invariance measures consistency of model predictions on transformations of the data.
From a dataset-centric view, we find a certain model's accuracy and invariance linearly correlated on different test sets.
arXiv Detail & Related papers (2022-07-14T17:08:25Z) - Bias-variance decomposition of overparameterized regression with random
linear features [0.0]
"Over parameterized models" avoid overfitting even when the number of fit parameters is large enough to perfectly fit the training data.
We show how each transition arises due to small nonzero eigenvalues in the Hessian matrix.
We compare and contrast the phase diagram of the random linear features model to the random nonlinear features model and ordinary regression.
arXiv Detail & Related papers (2022-03-10T16:09:21Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Benign overfitting in ridge regression [0.0]
We provide non-asymptotic generalization bounds for overparametrized ridge regression.
We identify when small or negative regularization is sufficient for obtaining small generalization error.
arXiv Detail & Related papers (2020-09-29T20:00:31Z) - Extreme Memorization via Scale of Initialization [72.78162454173803]
We construct an experimental setup in which changing the scale of initialization strongly impacts the implicit regularization induced by SGD.
We find that the extent and manner in which generalization ability is affected depends on the activation and loss function used.
In the case of the homogeneous ReLU activation, we show that this behavior can be attributed to the loss function.
arXiv Detail & Related papers (2020-08-31T04:53:11Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - Double Trouble in Double Descent : Bias and Variance(s) in the Lazy
Regime [32.65347128465841]
Deep neural networks can achieve remarkable performances while interpolating the training data perfectly.
Rather than the U-curve of the bias-variance trade-off, their test error often follows a "double descent"
We develop a quantitative theory for this phenomenon in the so-called lazy learning regime of neural networks.
arXiv Detail & Related papers (2020-03-02T17:39:31Z) - Be Like Water: Robustness to Extraneous Variables Via Adaptive Feature
Normalization [17.829013101192295]
Extraneous variables are variables that are irrelevant for a certain task, but heavily affect the distribution of the available data.
We show that the presence of such variables can degrade the performance of deep-learning models.
We show that estimating the feature statistics adaptively during inference, as in instance normalization, addresses this issue.
arXiv Detail & Related papers (2020-02-10T18:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.