論文の概要: HYB-VITON: A Hybrid Approach to Virtual Try-On Combining Explicit and Implicit Warping
- arxiv url: http://arxiv.org/abs/2501.03910v1
- Date: Tue, 07 Jan 2025 16:24:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:49:22.079531
- Title: HYB-VITON: A Hybrid Approach to Virtual Try-On Combining Explicit and Implicit Warping
- Title(参考訳): HYB-VITON: 明示と暗黙のワープを組み合わせた仮想トライオンのハイブリッドアプローチ
- Authors: Kosuke Takemoto, Takafumi Koshinaka,
- Abstract要約: 仮想トライオンシステムは電子商取引において大きな可能性を秘めており、顧客は自分自身で衣服を視覚化することができる。
既存の画像ベースの手法は、被写体を直接人体にワープする手法と、被写体をクロスアテンションで再構築する手法の2つのカテゴリに分類される。
本稿では,各手法の利点を組み合わせた新しいアプローチであるHYB-VITONを提案する。
- 参考スコア(独自算出の注目度): 4.1205832766381985
- License:
- Abstract: Virtual try-on systems have significant potential in e-commerce, allowing customers to visualize garments on themselves. Existing image-based methods fall into two categories: those that directly warp garment-images onto person-images (explicit warping), and those using cross-attention to reconstruct given garments (implicit warping). Explicit warping preserves garment details but often produces unrealistic output, while implicit warping achieves natural reconstruction but struggles with fine details. We propose HYB-VITON, a novel approach that combines the advantages of each method and includes both a preprocessing pipeline for warped garments and a novel training option. These components allow us to utilize beneficial regions of explicitly warped garments while leveraging the natural reconstruction of implicit warping. A series of experiments demonstrates that HYB-VITON preserves garment details more faithfully than recent diffusion-based methods, while producing more realistic results than a state-of-the-art explicit warping method.
- Abstract(参考訳): 仮想トライオンシステムは電子商取引において大きな可能性を秘めており、顧客は自分自身で衣服を視覚化することができる。
既存の画像ベースの手法は、被写体を直接人体にワープする(明示的なワープ)ものと、被写体(単純なワープ)をクロスアテンションで再構築する(単純なワープ)という2つのカテゴリに分類される。
明示的なワープは衣服の詳細を保存するが、しばしば非現実的なアウトプットを生成する。
本稿では,各手法の利点を組み合わせた新しいアプローチであるHYB-VITONを提案する。
これらのコンポーネントは、暗黙のワープの自然な再構築を生かしながら、明示的なワープ服の有用な地域を活用できる。
一連の実験により、HYB-VITONは最近の拡散法よりも衣服の細部を忠実に保存し、最先端の明示的なワープ法よりも現実的な結果を生み出すことが示されている。
関連論文リスト
- Improving Virtual Try-On with Garment-focused Diffusion Models [91.95830983115474]
拡散モデルは多くの画像合成タスクにおける生成的モデリングの革新をもたらした。
私たちは新しい拡散モデル、すなわちGarDiffを作り、衣服中心の拡散プロセスを引き起こします。
VITON-HDおよびDressCodeデータセットの実験は、最先端のVTONアプローチと比較して、GarDiffの優位性を示している。
論文 参考訳(メタデータ) (2024-09-12T17:55:11Z) - IMAGDressing-v1: Customizable Virtual Dressing [58.44155202253754]
IMAGDressing-v1は、固定された衣服とオプション条件で自由に編集可能な人間の画像を生成する仮想ドレッシングタスクである。
IMAGDressing-v1は、CLIPのセマンティック特徴とVAEのテクスチャ特徴をキャプチャする衣料UNetを組み込んでいる。
本稿では,凍結自己注意とトレーニング可能なクロスアテンションを含むハイブリッドアテンションモジュールを提案する。
論文 参考訳(メタデータ) (2024-07-17T16:26:30Z) - GraVITON: Graph based garment warping with attention guided inversion for Virtual-tryon [5.790630195329777]
衣服のフローにおけるコンテキストの価値を強調する新しいグラフベースのワープ手法を提案する。
提案手法は,VITON-HDとDresscodeのデータセットで検証され,衣服のワープ,テクスチャ保存,および全体リアリズムの大幅な改善を示す。
論文 参考訳(メタデータ) (2024-06-04T10:29:18Z) - Improving Diffusion Models for Authentic Virtual Try-on in the Wild [53.96244595495942]
本稿では,キュレートされた衣服を身に着けている人のイメージをレンダリングする,イメージベースの仮想試行について考察する。
衣服の忠実度を改善し,仮想試行画像を生成する新しい拡散モデルを提案する。
本稿では,一対の人着画像を用いたカスタマイズ手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T08:12:18Z) - WarpDiffusion: Efficient Diffusion Model for High-Fidelity Virtual
Try-on [81.15988741258683]
画像ベースの仮想トライオン(VITON)は、ホップ内の衣服イメージを対象人物に転送することを目的としている。
現在の方法では、衣服と肌の境界付近の合成品質や、ねじれた衣服のしわや影のような現実的な効果を見落としていることが多い。
本稿では,新しい情報的・局所的な特徴的注意機構を通じてワーピングと拡散に基づくパラダイムを橋渡しするワープ拡散を提案する。
論文 参考訳(メタデータ) (2023-12-06T18:34:32Z) - Taming the Power of Diffusion Models for High-Quality Virtual Try-On
with Appearance Flow [24.187109053871833]
仮想試着は、人間と衣服の両方の詳細を保存しながら、ある画像から別の画像へ衣服を転送することを目的とした、重要な画像合成タスクである。
本稿では,拡散モデルの生成を効果的に導くために,ワープモジュールを利用する例に基づく塗装手法を提案する。
我々のアプローチ、すなわちDCI-VTON(Diffusion-based Conditional Inpainting for Virtual Try-ON)は、拡散モデルのパワーを効果的に活用する。
論文 参考訳(メタデータ) (2023-08-11T12:23:09Z) - PG-VTON: A Novel Image-Based Virtual Try-On Method via Progressive
Inference Paradigm [6.929743379017671]
プログレッシブ推論パラダイム(PGVTON)を用いた新しい仮想試行法を提案する。
形状案内として試着解析を応用し,ワープ・マッピング・コンポジションによる衣服試着を実装した。
実験により,本手法は2つの挑戦シナリオ下での最先端性能を示す。
論文 参考訳(メタデータ) (2023-04-18T12:47:26Z) - Learning Garment DensePose for Robust Warping in Virtual Try-On [72.13052519560462]
そこで我々は,学習したDensePoseに基づく仮想試行のための頑健なワープ手法を提案する。
提案手法は,仮想試行ベンチマークにおける最先端の等価性を実現する。
論文 参考訳(メタデータ) (2023-03-30T20:02:29Z) - Single Stage Virtual Try-on via Deformable Attention Flows [51.70606454288168]
仮想試行は、ショップ内服と基準人物画像が与えられた写真リアルなフィッティング結果を生成することを目的としている。
マルチフロー推定に変形性アテンションスキームを適用した,変形性アテンションフロー(DAFlow)を新たに開発した。
提案手法は,定性的かつ定量的に最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-07-19T10:01:31Z) - Toward Accurate and Realistic Outfits Visualization with Attention to
Details [10.655149697873716]
商用アプリケーションに必要な重要な視覚的詳細を捉えるために,アウトフィット・ビジュアライゼーション・ネットを提案する。
OVNetは,1)意味的レイアウト生成器と2)複数の協調ワープを用いた画像生成パイプラインから構成される。
この手法を利用した対話型インターフェースは,ファッションeコマースのウェブサイトに展開され,圧倒的に肯定的なフィードバックを受けている。
論文 参考訳(メタデータ) (2021-06-11T19:53:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。