Dolphin: Moving Towards Closed-loop Auto-research through Thinking, Practice, and Feedback
- URL: http://arxiv.org/abs/2501.03916v3
- Date: Wed, 09 Apr 2025 16:27:02 GMT
- Title: Dolphin: Moving Towards Closed-loop Auto-research through Thinking, Practice, and Feedback
- Authors: Jiakang Yuan, Xiangchao Yan, Shiyang Feng, Bo Zhang, Tao Chen, Botian Shi, Wanli Ouyang, Yu Qiao, Lei Bai, Bowen Zhou,
- Abstract summary: Dolphin is a framework to enhance the automation level of scientific research.<n>Dolphin first generates novel ideas based on feedback from previous experiments.<n>Dolphin automatically analyzes the results of each idea and feeds the results back to the next round of idea generation.
- Score: 69.57617563853822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scientific research paradigm is undergoing a profound transformation owing to the development of Artificial Intelligence (AI). Recent works demonstrate that various AI-assisted research methods can largely improve research efficiency by improving data analysis, accelerating computation, and fostering novel idea generation. To further move towards the ultimate goal (i.e., automatic scientific research), in this paper, we introduce Dolphin, a closed-loop LLM-driven framework to enhance the automation level of scientific research. Dolphin first generates novel ideas based on feedback from previous experiments and relevant papers ranked by the topic and task attributes. Then, the generated ideas can be implemented using a code template refined and debugged with the designed exception-traceback-guided local code structure. Finally, Dolphin automatically analyzes the results of each idea and feeds the results back to the next round of idea generation. Experiments are conducted on the benchmark datasets of different topics and a subset of MLE-bench. Results show that Dolphin can continuously improve the performance of the input topic in a loop. We highlight that Dolphin can automatically propose methods that are comparable to the state-of-the-art in some tasks such as 3D point classification.
Related papers
- DiSciPLE: Learning Interpretable Programs for Scientific Visual Discovery [61.02102713094486]
Good interpretation is important in scientific reasoning, as it allows for better decision-making.
This paper introduces an automatic way of obtaining such interpretable-by-design models, by learning programs that interleave neural networks.
We propose DiSciPLE an evolutionary algorithm that leverages common sense and prior knowledge of large language models (LLMs) to create Python programs explaining visual data.
arXiv Detail & Related papers (2025-02-14T10:26:14Z) - O1 Embedder: Let Retrievers Think Before Action [28.583031173137428]
We propose O1 Embedder, which generates useful thoughts for the input query before making retrieval for the target documents.
Our approach is evaluated by comprehensive experiments, where substantial improvements are achieved across 12 popular datasets.
These results highlight O1 Embedder's remarkable accuracy and generalizability, paving the way for the development of next-generation IR foundation models.
arXiv Detail & Related papers (2025-02-11T13:48:10Z) - Dolphin: A Programmable Framework for Scalable Neurosymbolic Learning [18.50192747078987]
We propose a framework to scale neurosymbolic learning at a fundamental level by mapping forward chaining and backward gradient propagation in symbolic programs to vectorized computations.
Dolphin introduces a set of abstractions and primitives built directly on top of a high-performance deep learning framework like PyTorch.
We evaluate Dolphin on a suite of 13 benchmarks across 5 neurosymbolic tasks that combine deep learning models for text, image, or video processing with symbolic programs.
arXiv Detail & Related papers (2024-10-04T12:12:36Z) - ORS: A novel Olive Ridley Survival inspired Meta-heuristic Optimization Algorithm [2.4343652794054487]
Olive Ridley Survival (ORS) is proposed which is inspired from survival challenges faced by hatchlings of Olive Ridley sea turtle.
ORS has two major phases: hatchlings survival through environmental factors and impact of movement trajectory on its survival.
To validate the algorithm, fourteen mathematical benchmark functions from standard CEC test suites are evaluated and statistically tested.
arXiv Detail & Related papers (2024-09-13T21:48:05Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery [14.465756130099091]
This paper presents the first comprehensive framework for fully automatic scientific discovery.
We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, and describes its findings.
In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community.
arXiv Detail & Related papers (2024-08-12T16:58:11Z) - Autonomous LLM-driven research from data to human-verifiable research papers [0.0]
We build an automation platform that guides interacting through complete stepwise process.
In mode provided annotated data alone, datapaper raised hypotheses, designed plans, wrote and interpreted analysis codes, generated and interpreted results.
We demonstrate potential for AI-driven acceleration of scientific discovery while enhancing traceability, transparency and verifiability.
arXiv Detail & Related papers (2024-04-24T23:15:49Z) - DataDreamer: A Tool for Synthetic Data Generation and Reproducible LLM Workflows [72.40917624485822]
We introduce DataDreamer, an open source Python library that allows researchers to implement powerful large language models.
DataDreamer also helps researchers adhere to best practices that we propose to encourage open science.
arXiv Detail & Related papers (2024-02-16T00:10:26Z) - Dolphins: Multimodal Language Model for Driving [42.14069594700448]
We introduce Dolphins, a novel vision-language model architected to imbibe human-like abilities as a conversational driving assistant.
Dolphins is adept at processing multimodal inputs comprising video (or image) data, text instructions, and historical control signals.
arXiv Detail & Related papers (2023-12-01T09:10:33Z) - Novel Applications for VAE-based Anomaly Detection Systems [5.065947993017157]
Deep generative modeling (DGM) can create novel and unseen data, starting from a given data set.
As the technology shows promising applications, many ethical issues also arise.
Research indicates different biases affect deep learning models, leading to social issues such as misrepresentation.
arXiv Detail & Related papers (2022-04-26T20:30:37Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z) - Recovering 3D Human Mesh from Monocular Images: A Survey [49.00136388529404]
Estimating human pose and shape from monocular images is a long-standing problem in computer vision.
This survey focuses on the task of monocular 3D human mesh recovery.
arXiv Detail & Related papers (2022-03-03T18:56:08Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
We introduce a new differentiable physics benchmark called PasticineLab.
In each task, the agent uses manipulators to deform the plasticine into the desired configuration.
We evaluate several existing reinforcement learning (RL) methods and gradient-based methods on this benchmark.
arXiv Detail & Related papers (2021-04-07T17:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.