CoStruction: Conjoint radiance field optimization for urban scene reconStruction with limited image overlap
- URL: http://arxiv.org/abs/2501.03932v1
- Date: Tue, 07 Jan 2025 16:48:47 GMT
- Title: CoStruction: Conjoint radiance field optimization for urban scene reconStruction with limited image overlap
- Authors: Fusang Wang, Hala Djeghim, Nathan Piasco, Moussab Bennehar, Luis Roldão, Dzmitry Tsishkou,
- Abstract summary: CoStruction is a novel hybrid implicit surface reconstruction method tailored for large driving sequences with limited camera overlap.
Our method performs joint optimization of both radiance fields in addition to guided sampling achieving accurate reconstruction of large areas along with fine structures in complex urban scenarios.
- Score: 2.946747492685909
- License:
- Abstract: Reconstructing the surrounding surface geometry from recorded driving sequences poses a significant challenge due to the limited image overlap and complex topology of urban environments. SoTA neural implicit surface reconstruction methods often struggle in such setting, either failing due to small vision overlap or exhibiting suboptimal performance in accurately reconstructing both the surface and fine structures. To address these limitations, we introduce CoStruction, a novel hybrid implicit surface reconstruction method tailored for large driving sequences with limited camera overlap. CoStruction leverages cross-representation uncertainty estimation to filter out ambiguous geometry caused by limited observations. Our method performs joint optimization of both radiance fields in addition to guided sampling achieving accurate reconstruction of large areas along with fine structures in complex urban scenarios. Extensive evaluation on major driving datasets demonstrates the superiority of our approach in reconstructing large driving sequences with limited image overlap, outperforming concurrent SoTA methods.
Related papers
- StreetSurfGS: Scalable Urban Street Surface Reconstruction with Planar-based Gaussian Splatting [85.67616000086232]
StreetSurfGS is first method to employ Gaussian Splatting specifically tailored for scalable urban street scene surface reconstruction.
StreetSurfGS utilizes a planar-based octree representation and segmented training to reduce memory costs, accommodate unique camera characteristics, and ensure scalability.
To address sparse views and multi-scale challenges, we use a dual-step matching strategy that leverages adjacent and long-term information.
arXiv Detail & Related papers (2024-10-06T04:21:59Z) - SMORE: Simulataneous Map and Object REconstruction [66.66729715211642]
We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR.
We take a holistic perspective and optimize a compositional model of a dynamic scene that decomposes the world into rigidly-moving objects and the background.
arXiv Detail & Related papers (2024-06-19T23:53:31Z) - GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering [83.19049705653072]
During the Gaussian Splatting optimization process, the scene's geometry can gradually deteriorate if its structure is not deliberately preserved.
We propose a novel approach called GeoGaussian to mitigate this issue.
Our proposed pipeline achieves state-of-the-art performance in novel view synthesis and geometric reconstruction.
arXiv Detail & Related papers (2024-03-17T20:06:41Z) - NeuSurf: On-Surface Priors for Neural Surface Reconstruction from Sparse
Input Views [41.03837477483364]
We propose a novel sparse view reconstruction framework that leverages on-surface priors to achieve highly faithful surface reconstruction.
Specifically, we design several constraints on global geometry alignment and local geometry refinement for jointly optimizing coarse shapes and fine details.
The experimental results with DTU and BlendedMVS datasets in two prevalent sparse settings demonstrate significant improvements over the state-of-the-art methods.
arXiv Detail & Related papers (2023-12-21T16:04:45Z) - Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
The reconstruction of indoor scenes from multi-view RGB images is challenging due to the coexistence of flat and texture-less regions.
Recent methods leverage neural radiance fields aided by predicted surface normal priors to recover the scene geometry.
This work aims to reconstruct high-fidelity surfaces with fine-grained details by addressing the above limitations.
arXiv Detail & Related papers (2023-09-14T12:05:29Z) - Critical Regularizations for Neural Surface Reconstruction in the Wild [26.460011241432092]
We present RegSDF, which shows that proper point cloud supervisions and geometry regularizations are sufficient to produce high-quality and robust reconstruction results.
RegSDF is able to reconstruct surfaces with fine details even for open scenes with complex topologies and unstructured camera trajectories.
arXiv Detail & Related papers (2022-06-07T08:11:22Z) - Light Field Reconstruction via Deep Adaptive Fusion of Hybrid Lenses [67.01164492518481]
This paper explores the problem of reconstructing high-resolution light field (LF) images from hybrid lenses.
We propose a novel end-to-end learning-based approach, which can comprehensively utilize the specific characteristics of the input.
Our framework could potentially decrease the cost of high-resolution LF data acquisition and benefit LF data storage and transmission.
arXiv Detail & Related papers (2021-02-14T06:44:47Z) - Light Field Spatial Super-resolution via Deep Combinatorial Geometry
Embedding and Structural Consistency Regularization [99.96632216070718]
Light field (LF) images acquired by hand-held devices usually suffer from low spatial resolution.
The high-dimensional spatiality characteristic and complex geometrical structure of LF images make the problem more challenging than traditional single-image SR.
We propose a novel learning-based LF framework, in which each view of an LF image is first individually super-resolved.
arXiv Detail & Related papers (2020-04-05T14:39:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.