論文の概要: Untapped Potential in Self-Optimization of Hopfield Networks: The Creativity of Unsupervised Learning
- arxiv url: http://arxiv.org/abs/2501.04007v1
- Date: Tue, 10 Dec 2024 11:58:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-12 16:25:19.411855
- Title: Untapped Potential in Self-Optimization of Hopfield Networks: The Creativity of Unsupervised Learning
- Title(参考訳): ホップフィールドネットワークの自己最適化の可能性:教師なし学習の創造性
- Authors: Natalya Weber, Christian Guckelsberger, Tom Froese,
- Abstract要約: 我々は、自己最適化(SO)モデルが創造的プロセスに必要な十分な条件を満たすことを論じる。
我々は、SOモデルが学習する人工システムにおける創造的行動の出現をシミュレートし、理解することを可能にすると結論付けた。
- 参考スコア(独自算出の注目度): 0.6144680854063939
- License:
- Abstract: The Self-Optimization (SO) model can be considered as the third operational mode of the classical Hopfield Network (HN), leveraging the power of associative memory to enhance optimization performance. Moreover, is has been argued to express characteristics of minimal agency which, together with its biological plausibility, renders it useful for the study of artificial life. In this article, we draw attention to another facet of the SO model: its capacity for creativity. Drawing on the creativity studies literature, we argue that the model satisfies the necessary and sufficient conditions of a creative process. Moreover, we explore the dependency of different creative outcomes based on learning parameters, specifically the learning and reset rates. We conclude that the SO model allows for simulating and understanding the emergence of creative behaviors in artificial systems that learn.
- Abstract(参考訳): 自己最適化(SO)モデルは古典的なホップフィールドネットワーク(HN)の第3の動作モードと見なすことができ、連想メモリのパワーを利用して最適化性能を向上させる。
さらに、その生物学的妥当性とともに、人工生命の研究に有用である最小限のエージェンシーの特徴を表現していると論じられている。
本稿では、SOモデルの別の側面、すなわち創造性に対する能力に注目します。
創造性研究の文献に基づいて、このモデルは創造的プロセスに必要な十分な条件を満たすと論じる。
さらに,学習パラメータ,特に学習率とリセット率に基づく,異なる創造的成果の依存性についても検討する。
我々は、SOモデルが学習する人工システムにおける創造的行動の出現をシミュレートし、理解することを可能にすると結論付けた。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - Creativity Has Left the Chat: The Price of Debiasing Language Models [1.223779595809275]
大規模言語モデル(LLM)の創造性に対する人間からのフィードバックからの強化学習の意図しない結果について検討する。
我々の発見は、コピーライティング、広告作成、顧客ペルソナ生成といったクリエイティブなタスクにLLMを頼っているマーケターにとって大きな意味を持つ。
論文 参考訳(メタデータ) (2024-06-08T22:14:51Z) - Verbalized Probabilistic Graphical Modeling with Large Language Models [8.961720262676195]
この研究は、大規模言語モデルによる学習自由ベイズ推論を促進する新しいベイズ急進的アプローチを導入している。
本研究は,AI言語理解システムの改善の可能性を示すとともに,信頼性評価とテキスト生成品質を効果的に向上させることを示唆する。
論文 参考訳(メタデータ) (2024-06-08T16:35:31Z) - Creativity and Markov Decision Processes [0.20482269513546453]
創造性に関するボーデンのプロセス理論とマルコフ決定過程(MDP)の間の公式なマッピングを同定する。
筆者らは, 創造プロセスの種類, 達成の機会, 創造性への脅威(無呼吸)を, MDPで見ることができるかを理解するために, 11点中3点を詳細に調査した。
今後の作業やアプリケーションにおける,このようなマッピングの選択に関する品質基準について論じる。
論文 参考訳(メタデータ) (2024-05-23T18:16:42Z) - Can AI Be as Creative as Humans? [84.43873277557852]
理論的には、AIは人間の創造者によって生成されたデータに適切に適合できるという条件の下で、人間と同じくらい創造的になれることを証明しています。
AIの創造性に関する議論は、十分な量のデータに適合する能力の問題に縮小されている。
論文 参考訳(メタデータ) (2024-01-03T08:49:12Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - The Creative Frontier of Generative AI: Managing the Novelty-Usefulness
Tradeoff [0.4873362301533825]
生成人工知能(AI)システムにおける新規性と有用性の最適バランスについて検討する。
どちらの側面も過度に強調すると、幻覚や暗記のような限界に繋がる。
論文 参考訳(メタデータ) (2023-06-06T11:44:57Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Challenges in creative generative models for music: a divergence
maximization perspective [3.655021726150369]
創造的な実践における生成機械学習モデルの開発は、芸術家、実践家、パフォーマーの間でより多くの関心を集めている。
ほとんどのモデルは、トレーニングデータセットで定義されたドメインの外にあるコンテンツを生成することができない。
本稿では,ML目的の新しい汎用的な定式化から始まる,新たな予測フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-16T12:02:43Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。