Approximation Rates in Fréchet Metrics: Barron Spaces, Paley-Wiener Spaces, and Fourier Multipliers
- URL: http://arxiv.org/abs/2501.04023v2
- Date: Tue, 14 Jan 2025 13:40:35 GMT
- Title: Approximation Rates in Fréchet Metrics: Barron Spaces, Paley-Wiener Spaces, and Fourier Multipliers
- Authors: Ahmed Abdeljawad, Thomas Dittrich,
- Abstract summary: We study some general approximation capabilities for linear differential operators by approximating the corresponding symbol in the Fourier domain.<n>In that sense, we measure the approximation error in terms of a Fr'echet metric.<n>We then focus on a natural extension of our main theorem, in which we manage to reduce the assumptions on the sequence of semi-norms.
- Score: 1.4732811715354452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Operator learning is a recent development in the simulation of Partial Differential Equations (PDEs) by means of neural networks. The idea behind this approach is to learn the behavior of an operator, such that the resulting neural network is an (approximate) mapping in infinite-dimensional spaces that is capable of (approximately) simulating the solution operator governed by the PDE. In our work, we study some general approximation capabilities for linear differential operators by approximating the corresponding symbol in the Fourier domain. Analogous to the structure of the class of H\"ormander-Symbols, we consider the approximation with respect to a topology that is induced by a sequence of semi-norms. In that sense, we measure the approximation error in terms of a Fr\'echet metric, and our main result identifies sufficient conditions for achieving a predefined approximation error. Secondly, we then focus on a natural extension of our main theorem, in which we manage to reduce the assumptions on the sequence of semi-norms. Based on existing approximation results for the exponential spectral Barron space, we then present a concrete example of symbols that can be approximated well.
Related papers
- Revolutionizing Fractional Calculus with Neural Networks: Voronovskaya-Damasclin Theory for Next-Generation AI Systems [0.0]
This work introduces rigorous convergence rates for neural network operators activated by symmetrized and hyperbolic perturbed functions.
We extend classical approximation theory to fractional calculus via Caputo derivatives.
arXiv Detail & Related papers (2025-04-01T21:03:00Z) - Diffeomorphic Latent Neural Operators for Data-Efficient Learning of Solutions to Partial Differential Equations [5.308435208832696]
A computed approximation of the solution operator to a system of partial differential equations (PDEs) is needed in various areas of science and engineering.<n>We propose that in order to learn a PDE solution operator that can generalize across multiple domains without needing to sample enough data expressive enough, we can train instead a latent neural operator on just a few ground truth solution fields.
arXiv Detail & Related papers (2024-11-27T03:16:00Z) - Operator Learning of Lipschitz Operators: An Information-Theoretic Perspective [2.375038919274297]
This work addresses the complexity of neural operator approximations for the general class of Lipschitz continuous operators.
Our main contribution establishes lower bounds on the metric entropy of Lipschitz operators in two approximation settings.
It is shown that, regardless of the activation function used, neural operator architectures attaining an approximation accuracy $epsilon$ must have a size that is exponentially large in $epsilon-1$.
arXiv Detail & Related papers (2024-06-26T23:36:46Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Learning solution operators of PDEs defined on varying domains via MIONet [2.048226951354646]
We first extend the approximation theory of MIONet to deal with metric spaces.
We then construct a set consisting of some appropriate regions and provide a metric on this set thus make it a metric space.
We are able to learn the solution mapping of a PDE with all the parameters varying.
arXiv Detail & Related papers (2024-02-23T05:11:34Z) - Sampling and estimation on manifolds using the Langevin diffusion [45.57801520690309]
Two estimators of linear functionals of $mu_phi $ based on the discretized Markov process are considered.
Error bounds are derived for sampling and estimation using a discretization of an intrinsically defined Langevin diffusion.
arXiv Detail & Related papers (2023-12-22T18:01:11Z) - Space-Time Approximation with Shallow Neural Networks in Fourier
Lebesgue spaces [1.74048653626208]
We study the inclusion of anisotropic weighted Fourier-Lebesgue spaces in the Bochner-Sobolev spaces.
We establish a bound on the approximation rate for functions from the anisotropic weighted Fourier-Lebesgue spaces and approximation via SNNs in the Bochner-Sobolev norm.
arXiv Detail & Related papers (2023-12-13T19:02:27Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood
Estimation [2.53740603524637]
We develop a class of interacting particle systems for implementing a maximum marginal likelihood estimation procedure.
In particular, we prove that the parameter marginal of the stationary measure of this diffusion has the form of a Gibbs measure.
Using a particular rescaling, we then prove geometric ergodicity of this system and bound the discretisation error.
in a manner that is uniform in time and does not increase with the number of particles.
arXiv Detail & Related papers (2023-03-23T16:50:08Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - Sobolev-type embeddings for neural network approximation spaces [5.863264019032882]
We consider neural network approximation spaces that classify functions according to the rate at which they can be approximated.
We prove embedding theorems between these spaces for different values of $p$.
We find that, analogous to the case of classical function spaces, it is possible to trade "smoothness" (i.e., approximation rate) for increased integrability.
arXiv Detail & Related papers (2021-10-28T17:11:38Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
This work is to generalize neural networks so that they can learn mappings between infinite-dimensional spaces (operators)
We formulate approximation of the infinite-dimensional mapping by composing nonlinear activation functions and a class of integral operators.
Experiments confirm that the proposed graph kernel network does have the desired properties and show competitive performance compared to the state of the art solvers.
arXiv Detail & Related papers (2020-03-07T01:56:20Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.