Learning solution operators of PDEs defined on varying domains via MIONet
- URL: http://arxiv.org/abs/2402.15097v2
- Date: Sun, 17 Mar 2024 01:45:49 GMT
- Title: Learning solution operators of PDEs defined on varying domains via MIONet
- Authors: Shanshan Xiao, Pengzhan Jin, Yifa Tang,
- Abstract summary: We first extend the approximation theory of MIONet to deal with metric spaces.
We then construct a set consisting of some appropriate regions and provide a metric on this set thus make it a metric space.
We are able to learn the solution mapping of a PDE with all the parameters varying.
- Score: 2.048226951354646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a method to learn the solution operators of PDEs defined on varying domains via MIONet, and theoretically justify this method. We first extend the approximation theory of MIONet to further deal with metric spaces, establishing that MIONet can approximate mappings with multiple inputs in metric spaces. Subsequently, we construct a set consisting of some appropriate regions and provide a metric on this set thus make it a metric space, which satisfies the approximation condition of MIONet. Building upon the theoretical foundation, we are able to learn the solution mapping of a PDE with all the parameters varying, including the parameters of the differential operator, the right-hand side term, the boundary condition, as well as the domain. Without loss of generality, we for example perform the experiments for 2-d Poisson equations, where the domains and the right-hand side terms are varying. The results provide insights into the performance of this method across convex polygons, polar regions with smooth boundary, and predictions for different levels of discretization on one task. We also show the additional result of the fully-parameterized case in the appendix for interested readers. Reasonably, we point out that this is a meshless method, hence can be flexibly used as a general solver for a type of PDE.
Related papers
- Approximation Rates in Fréchet Metrics: Barron Spaces, Paley-Wiener Spaces, and Fourier Multipliers [1.4732811715354452]
We study some general approximation capabilities for linear differential operators by approximating the corresponding symbol in the Fourier domain.
In that sense, we measure the approximation error in terms of a Fr'echet metric.
We then focus on a natural extension of our main theorem, in which we manage to reduce the assumptions on the sequence of semi-norms.
arXiv Detail & Related papers (2024-12-27T20:16:04Z) - A deformation-based framework for learning solution mappings of PDEs defined on varying domains [2.048226951354646]
We establish a deformation-based framework for learning solution mappings of PDEs defined on varying domains.
We point out that such a metric-to-Banach mapping can be learned by neural networks, hence the solution mapping is accordingly learned.
arXiv Detail & Related papers (2024-12-02T11:07:01Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - GMC-PINNs: A new general Monte Carlo PINNs method for solving fractional partial differential equations on irregular domains [4.051523221722475]
We propose a new general (quasi) Monte Carlo PINN for solving fPDEs on irregular domains.
We use a more general Monte Carlo approximation method to solve different fPDEs, which is valid for fractional differentiation under any definition.
Our results demonstrate the effectiveness of GMC-PINNs in dealing with irregular domain problems and show a higher computational efficiency compared to the original fPINN method.
arXiv Detail & Related papers (2024-04-30T21:52:15Z) - Approximation of Solution Operators for High-dimensional PDEs [2.3076986663832044]
We propose a finite-dimensional control-based method to approximate solution operators for evolutional partial differential equations.
Results are presented for several high-dimensional PDEs, including real-world applications to solving Hamilton-Jacobi-Bellman equations.
arXiv Detail & Related papers (2024-01-18T21:45:09Z) - Isotropic Gaussian Processes on Finite Spaces of Graphs [71.26737403006778]
We propose a principled way to define Gaussian process priors on various sets of unweighted graphs.
We go further to consider sets of equivalence classes of unweighted graphs and define the appropriate versions of priors thereon.
Inspired by applications in chemistry, we illustrate the proposed techniques on a real molecular property prediction task in the small data regime.
arXiv Detail & Related papers (2022-11-03T10:18:17Z) - Measuring dissimilarity with diffeomorphism invariance [94.02751799024684]
We introduce DID, a pairwise dissimilarity measure applicable to a wide range of data spaces.
We prove that DID enjoys properties which make it relevant for theoretical study and practical use.
arXiv Detail & Related papers (2022-02-11T13:51:30Z) - DiffNet: Neural Field Solutions of Parametric Partial Differential
Equations [30.80582606420882]
We consider a mesh-based approach for training a neural network to produce field predictions of solutions to PDEs.
We use a weighted Galerkin loss function based on the Finite Element Method (FEM) on a parametric elliptic PDE.
We prove theoretically, and illustrate with experiments, convergence results analogous to mesh convergence analysis deployed in finite element solutions to PDEs.
arXiv Detail & Related papers (2021-10-04T17:59:18Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLE is a dimensionality-reduction post-processing step that corrects an initial embedding by minimizing a loss functional with both a local, metric term and a global, topological term.
We observe that DIPOLE outperforms popular methods like UMAP, t-SNE, and Isomap on a number of popular datasets.
arXiv Detail & Related papers (2021-06-14T17:19:44Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - The Random Feature Model for Input-Output Maps between Banach Spaces [6.282068591820945]
The random feature model is a parametric approximation to kernel or regression methods.
We propose a methodology for use of the random feature model as a data-driven surrogate for operators that map an input Banach space to an output Banach space.
arXiv Detail & Related papers (2020-05-20T17:41:40Z) - Model Reduction and Neural Networks for Parametric PDEs [9.405458160620533]
We develop a framework for data-driven approximation of input-output maps between infinite-dimensional spaces.
The proposed approach is motivated by the recent successes of neural networks and deep learning.
For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology.
arXiv Detail & Related papers (2020-05-07T00:09:27Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
This work is to generalize neural networks so that they can learn mappings between infinite-dimensional spaces (operators)
We formulate approximation of the infinite-dimensional mapping by composing nonlinear activation functions and a class of integral operators.
Experiments confirm that the proposed graph kernel network does have the desired properties and show competitive performance compared to the state of the art solvers.
arXiv Detail & Related papers (2020-03-07T01:56:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.